ORIGINAL ARTICLE
Canola seeds coating with formulations based on sodium alginate, chitosan and Thichoderma harzianum
More details
Hide details
1
Faculty of Agricultural Sciences, Institute of Research on Agricultural Production, Environment, and Health (IIPAAS), National University of Lomas de Zamora, Llavallol, Argentina
2
Phytotechnical Institute of Santa Catalina, National University of La Plata, La Plata, Argentina
3
Faculty of Agricultural Sciences, National University of Lomas de Zamora, Llavallol, Argentina
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2023-11-02
Acceptance date: 2024-01-08
Online publication date: 2024-03-06
Corresponding author
Cyntia Lorena Szemruch
Faculty of Agricultural Sciences, Institute of Research on Agricultural Production,
Environment, and Health (IIPAAS), National University of Lomas de Zamora, Llavallol, Argentina
Journal of Plant Protection Research 2024;64(1):61-68
HIGHLIGHTS
- Seed production demands the replacement of pesticides with natural products.
- This work provides a guide for seed producers in adopting biopolymer-based coatings.
- Canola seed can be coated with sodium alginate, chitosan, and Trichoderma harzianum.
- Some formulations maintain canola seed quality and safe storage.
KEYWORDS
TOPICS
ABSTRACT
Seed coating technology combined with biopolymers offers an alternative method to reduce
environmental contamination. However, when biological agents are incorporated,
biopolymers would have diverse properties and effects. This underscores the necessity of
exploring the optimal dosages and formulations of biopolymers to ensure the survival of
beneficial microorganisms, seed quality, and proper storage. This study aimed to explore
the effects of different sodium alginate and chitosan coating formulations on Trichoderma
harzianum viability and canola seeds quality. The coating process involved mixing T. harzianum
powder with sodium alginate, talc and chitosan in different doses, sequences and
formulations. Trichoderma harzianum viability was assessed through colony-forming units
per ml over time. Canola seed quality was evaluated by measuring radicle emergence, germination
percentage, seedling growth, and field emergence. Sodium alginate, both alone
and in combination with talc, improved T. harzianum viability immediately after treatment
and during storage. These coatings did not impair seed germination and improved canola
root growth. Among the different chitosan formulations, a 1 : 100 ratio in talc improved
strain survival and root growth without affecting germination, radicle, and field emergence.
Coating canola seeds is a practical alternative to the application of T. harzianum, sodium alginate
and talc, as it preserves their viability over time and improves seedling performance.
Chitosan formulations in acetic acid should be carefully developed to prevent negative effects
on seeds or biological agents.
ACKNOWLEDGEMENTS
We express our gratitude to LomasCyt Program – National
University of Lomas de Zamora, Argentina for
financial support and the Nuseed Company for the
contribution of the genetic material.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (35)
1.
Aguirre K., Perez L.M., Montealegre J.R. 2023. In vitro evaluation of drying supports and adhesive polymers as adjuvants for biocontrol of Diplodia seriata by Trichoderma harzianum and Clonostachys rosea. Phytopathologia Mediterranea 60 (2): 227–237. DOI:
https://doi.org/10.36253/phyto....
2.
Arias Chavarría L.D., Batista Menezes D., Orozco Cayasso S., Vargas Martínez A., Montes de Oca Vásquez G. 2023. Evaluation of the viability of microencapsulated Trichoderma longibrachiatum conidia as a strategy to prolong the shelf life of the fungus as a biological control agent. [Available on SSRN:
http://dx.doi.org/10.2139/ssrn...] [Accessed: 14 November 2023].
3.
Arsyadmunir A., Pawana G., Badami K., Wuryandari Y. 2023. Effect of biopolymer composition on the viability of Trichoderma sp. as maize-seed coating. Agrovigor 16 (1): 1–5. DOI:
https://doi.org/10.21107/agrov....
4.
Báez F., Perdomo C., Pincay A., Tello C., Villamizar L., Trevor J., Jaronski S., Viera W. 2019. Manual for Quality Analysis of Formulations of Beneficial Fungi. Manual No. 112. Ed. INIAP. Experimental Santa Catalina, Ecuador, 56 pp.
5.
Chandrika K.S.V.P., Prasad R.D., Godbole V. 2019. Development of chitosan-PEG blended films using Trichoderma: Enhancement of antimicrobial activity and seed quality. International Journal of Biological Macromolecules 1 (126): 282–290. DOI:
https://doi:10.1016/j.ijbiomac....
6.
Chen L., Hao D., Dou K., Lang B., Wang X., Li Y., Chen J. 2023. Preparation of high water-soluble Trichoderma co-culture metabolite powder and its effects on seedling emergence rate and growth of crops. Journal of Fungi 9 (7): 767. DOI:
https://doi:10.3390/jof9070767.
7.
Chin J.M., Lim Y Y., Ting A. S.Y. 2021. Biopolymers for biopriming of Brassica rapa seeds: A study on coating efficacy, bioagent viability and seed germination. Journal of the Saudi Society of Agricultural Sciences 20 (3): 126–487. DOI:
https://doi.org/10.1016/j.jssa....
8.
Coelho N., Romano A. 2022. Impact of chitosan on plant tissue culture: recent applications. Plant Cell Tissue Organ Culture 148: 1–13. DOI:
https://doi.org/10.1007/s11240....
9.
Cortés-Rojas D., Beltrán-Acosta C., Zapata-Narvaez Y. 2021. Seed coating as a delivery system for the endophyte Trichoderma koningiopsis Th003 in rice (Oryza sativa). Applied Microbiology and Biotechnology 105: 1889–1904. DOI:
https://doi.org/10.1007/s00253....
10.
Dogaru B. I., Stoleru V., Mihalache G., Yonsel S., Popescu M. C. 2021. Gelatin reinforced with CNCs as nanocomposite matrix for Trichoderma harzianum KUEN 1585 spores in seed coatings. Molecules 26: 5755. DOI:
https://doi.org/10.3390/molecu....
11.
Elad Y., Chet I., Henis Y. 1981. A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica 9: 59–67. DOI:
https://doi.org/10.1007/BF0315....
12.
George A., Sanjay M.R., Srisuk R., Parameswaranpillai J., Siengchin S. 2020. A comprehensive review on chemical properties and applications of biopolymers and their composites. International Journal of Biological Macromolecules 1 (154): 329–338. DOI:
https://doi.org/10.1016/j.ijbi....
13.
Ghasemialitappeh M., Sadravi M., Mirabadi A. 2018. Isolation and identification of Trichoderma species and investigating their seed treatment effect on rapeseed (Brassica napus L.) germination. Cercetari Agronomice in Moldova 51 (3): 43–50. DOI:
https://doi.org/10.2478/CERCE-....
14.
Godínez-Garrido N.A., Torres-Castillo J.A., Ramírez-Pimentel J.G., Covarrubias-Prieto J., Cervantes-Ortiz F., Aguirre-Mancilla C.L. 2022. Effects on germination and plantlet development of sesame (Sesamum indicum L.) and bean (Phaseolus vulgaris L.) seeds with chitosan coatings. Agronomy 12: 666. DOI:
https://doi.org/10.3390/agrono....
15.
Hamrouni R. 2019. Screening, identification, growth physiology and metabolism of Trichoderma asperellum cultivated on solid substrates. Doctoral thesis, Aix-Marseille University, France. 155 pp. DOI:
http://www.theses.fr/2019AIXM0....
16.
ISTA 2023. International Rules for Seed Testing, International Seed Testing Association. International Seed Testing Association, Bassersdorf, Switzerland, 308 pp. DOI:
https://doi.org/10.15258/istar....
17.
Kappel L., Kosa N., Gruber S. 2022. The multilateral efficacy of chitosan and Trichoderma on sugar beet. Journal of Fungi 8 (2): 137. DOI:
https://doi:10.3390/jof8020137.
18.
Korbecka-Glinka G., Piekarska K., Wiśniewska-Wrona M. 2022. The use of carbohydrate biopolymers in plant protection against pathogenic fungi. Polymers 14 (14): 2854–2854. DOI:
https://doi:10.3390/polym14142....
19.
Kuchlan P., Kuchlan M.K., Ansari M.M. 2018. Efficient application of Trichoderma viride on soybean [Glycine max (L.) Merrill] seed using thin layer polymer coating. Legume Research 42 (2): 260–264. DOI:
https://doi:10.18805/LR-3834.
20.
Locatelli G.O., dos Santos G.F., Botelho P.S., Finkler C.L.L. Bueno L.A. 2018. Development of Trichoderma sp. formulations in encapsulated granules (CG) and evaluation of conidia shelf-life. Biological Control 117: 21–29. DOI:
https://doi.org/10.1016/j.bioc....
22.
Meena P.D., Chattopadhyay C., Meena P.S., Goyal P., Kumar V.R. 2014. Shelf life and efficacy of talc-based bio-formulations of Trichoderma harzianum isolates in management of Sclerotinia rot of Indian mustard (Brassica juncea). Annals of Plant Protection Sciences 22 (1): 127–135.
23.
Pedrini S., Merritt D.J., Stevens J., Dixon K. 2017. Seed coating: science or marketing spin? Trends Plant Science 22 (2): 106–116. DOI:
https://doi.org/10.1016/j.tpla....
24.
Peña-Datoli M., Hidalgo-Moreno C.M., González-Hernández V.A., Alcántar-González E.G., Etchevers-Barra J. D. 2016. Maize (Zea mays L.) seed coating with chitosan and sodium alginate and its effect on root development. Agrociencia 50 (8): 1091–1106.
26.
Riseh R.S., Hassanisaadi M., Vatankhah M., Soroush, Varma S.R. 2022. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. International Journal of Biological Macromolecules 222: 1589–1604. DOI:
https://doi:10.1016/j.ijbiomac....
27.
Rubio M.B., Monti M.M., Gualtieri L., Ruocco M., Hermosa R., Monte E. 2023. Trichoderma harzianum volatile organic compounds regulated by the thctf1 transcription factor are involved in antifungal activity and beneficial plant responses. Journal of Fungi 9 (6): 654. DOI:
https://doi.org/10.3390/jof906....
28.
Scarsi M., Possenti J.C., Herrera R.P., Deuner B.C. 2020. Soybean seeds performance coated with hidrophyl polymers. Colloquium Agrariae 16 (3): 48–59. DOI:
https://doi:10.5747/CA.2020.V1....
29.
Sun W., Shahrajabian M.H., Petropoulos S.A., Shahrajabian N. 2023. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants 12: 2469. DOI:
https://doi.org/10.3390/plants....
30.
Szemruch C., Astiz Gassó M.M., García F., Sanchez S., Martinez P.M., Cerdá M. 2022. Biopolymer and Trichoderma harzianum compatibility for sunflower seed coating. Journal of Experimental Research 10 (4): 203–212.
31.
Taylor A.G. 2020. Seed storage, germination, quality and enhancements. p. 20–23. In: “The Physiology of Vegetable Crops” (Wien and Stuzel, eds.). 2nd edition. CAB Internacional. London, UK. DOI:
https://doi.org/10.1079/978178....
32.
Turkan S., Mierek-Adamska A., Kulasek M., Konieczna W.B., Dąbrowska G.B. 2023. New seed coating containing Trichoderma viride with anti-pathogenic properties. PeerJ 11: e15392. DOI:
https://doi:10.7717/peerj.1539....
33.
Tyśkiewicz R., Nowak A., Ozimek E., Jaroszuk-Ściseł J. 2022. Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences 23 (4): 2329. DOI:
https://doi:10.3390/ijms230423.... PMID: 35216444.
34.
Xie P., Yang S, Liu X., Zhang T., Zhao X., Wen T., Zhang J., Xue C., Shen Q., Yuan J. 2023. Learning from seed microbes: Trichoderma coating intervenes in rhizosphere microbiome assembly. Microbiology Spectrum 11 (3): e0309722. DOI:
https://doi: 10.1128/spectrum.03097-22.
35.
Zhang K., Khan Z., Yu Q., Qu Z., Liu J., Luo T., Zhu K., Bi J., Hu L., Luo L. 2022. Biochar coating is a sustainable and economical approach to promote seed coating technology, seed germination, plant performance, and soil health. Plants 11: 2864. DOI:
https://doi.org/10.3390/plants....