ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Beauveria bassiana CEP147 reduce thrips population on bell pepper crops.
  • B. bassiana in combination with inter-rows cover is the most effective treatment.
  • Fruit quality increase when B. basssiana and inter-rows cover are applied to the crop.
KEYWORDS
TOPICS
ABSTRACT
The excessive use of chemical products to control thrips and the tomato spotted wilt virus (TSWV) is not only harmful to human health, the environment, and biodiversity, but also the resistance these generate in insects turns them inefficient in the long run. Consequently, to achieve sustainable and residue-free production, control alternatives must be explored. This work proposes the use of Beauveria bassiana (BB) in combination with inter-row cover (IC) to reduce the population of thrips and the incidence of TSWV on bell pepper. For this purpose, a trial was carried out in a bell pepper greenhouse, consisting of four randomly distributed treatments with four repetitions of 66 plants each. The treatments assayed were: T (without BB inoculation or IC), TC (without BB inoculation and with IC), B (inoculated with BB), and BC (inoculated with BB and IC). The B. bassiana CEP147 strain was used based on its effectiveness in previous laboratory tests. After detecting one thrips per flower, five foliar spray applications were made at weekly intervals. The trial lasted 4 months. Dur- ing this time, the number of thrips in the three central plants of each repetition, the pres- ence of symptoms compatible with TSWV, as well as the number of fruits, and their weight, length, width and health were monitored weekly. Between the fourth and sixth weeks after the last application, a significant reduction in the population of total thrips (nymphs + + adults) was observed in both treatments B and BC compared to T and TC. In addition, plants with symptoms compatible with TSWV were very scarce, and the fruits showed sig- nificant differences in their quality parameters, producing the longest and heaviest in the BC treatment. The results showed that combining biological and cultural control makes sustainable pepper production possible.
ACKNOWLEDGEMENTS
The authors wish to thank Dr. Arnaldo Maciá (División Entomología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Ar- gentina) and Dr. Daniela Fuentes Rodriguéz (Labora- torio de Herbivoría y Control Biológico en Humedales, Centro de Ecología Aplicada del Litoral, Corrientes, Argentina) for their statistical analysis assistance, and Dr. Laura Bartel and Ing Marina Sisterna (Centro de Investigaciones de Fitopatología, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Pla- ta, Buenos Aires, Argentina) for their critical review of the manuscript.
FUNDING
This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET–PIP 11220130100533).
RESPONSIBLE EDITOR
Natasza Borodynko-Filas
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (69)
1.
Abou-Jawdah Y., Sobh H., El-Zammar S., Fayyad A., Lecoq H. 2000. Incidence and management of virus diseases of cucurbits in Lebanon. Crop Protection 19 (4): 217–224. DOI: https://doi.org/10.1016/S0261-....
 
2.
Allegrucci N., Velazquez M.S., Russo M.L., Vianna M.F., Abarca C., Scorsetti, A.C. 2020. Establishment of the entomopathogenic fungus Beauveria bassiana as an endophyte in Capsicum annuum and its effects on the aphid pest Myzus persicae (Homoptera: Aphididae). Revista de Biología Tropical 68 (4): 1084–1094.
 
3.
Barra-Bucarei L., Iglesias A.F., González M.G., Silva Aguayo G., Carrasco-Fernández J., Castro J.F., Ortiz Campos J. 2020. Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two Solanaceae crops. Microorganisms 8 (1): 65. DOI: https://doi.org/10.3390/microo....
 
4.
Bégin S., Dubé S.L., Calandriello J. 2001. Mulching and plasticulture. p. 215–223. In: “Physical Control Methods in Plant Protection” (C. Vincent, B. Panneton, F. Fleurat-Lessard, eds.). Springer, New York, USA.
 
5.
Brown S.L., Brown J.E. 1992. Effect of plastic mulch colour and insecticides on thrips populations and damage to tomato. Horticultural Technology 2 (2): 208–211. DOI: https://doi.org/10.21273/HORTT....
 
6.
Bustillo Pardey A.E. 2009. Evaluación de insecticidas químicos y biológicos para controlar Frankliniella occidentalis (Thysanoptera: Thripidae) en cultivos de espárragos. Revista Colombiana de Entomología 35 (1): 12–17.
 
7.
Carrizo P., Benitez D. 2002. Frankliniella occidentalis. Captura con trampas adhesivas amarillas. Revista de la Facultad de Ciencias Agrarias de la Universidad Nacional de Cuyo 34 (2): 87–91.
 
8.
Cluever J.D., Smith H.A. 2017. A photo-based key of thrips (Thysanoptera) associated with horticultural crops in Florida. Florida Entomologist 100 (2): 454–467. DOI: https://doi.org/10.1653/024.10....
 
9.
Conover W.J. 1999. Practical Nonparametric Statistical. 3rd ed. John Wiley & Sons Inc., New York, USA, 608 pp.
 
10.
Cooper A.J. 1973. Root temperature and plant growth – A review. Research Review No. 4, Commonwealth Bureau of Horticulture and Plantation Crops, Commonwealth Agricultural Bureau, Farnham Royal, England, UK, p. 73.
 
11.
Dal Bó E., Ronco L., Alippi A., Fernández R. 1995. TSWV on Chrysanthemum in Argentina. Plant Disease 79 (5): 538. DOI: https://doi.org/10.1094/PD-79-....
 
12.
Dal Bó E. 2011. Detección de virus transmitidos por trips: el caso particular de Argentina. Métodos en Ecología y Sistemática 6 (3): 27–32.
 
13.
Davari A., Parker B.L., Sullivan C.F., Ghalehgolabbehbahani A., Skinner M. 2021. Biological control of Western flower thrips, Frankliniella occidentalis, using a self-sustaining granular fungal treatment. Bulletin of Entomological Research 111 (6): 688–693. DOI: https://doi.org/10.1017/S00074....
 
14.
De Santis L. 1995. La presencia en la República Argentina del trips californiano de las flores. Academia Nacional de Agronomía y Veterinaria. Comunicación Académica número 49: 1–18.
 
15.
Díaz-Pérez J.C., Batal K.D. 2002. Colored plastic film mulches affect tomato growth and yield via changes in root-zone temperature. Journal of the American Society for Horticultural Science 127 (1): 127–135. DOI: https://doi.org/10.21273/JASHS....
 
16.
Díaz-Pérez J.C. 2010. Bell pepper (Capsicum annum L.) grown on plastic film mulches: Effects on crop microenvironment, physiological attributes, and fruit yield. Horticultural Science 45 (8): 1196–1204. DOI: https://doi.org/10.21273/HORTS....
 
17.
Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M., Robledo C.W. 2020. InfoStat, v 2020. FCA, Grupo InfoStat, Universidad Nacional de Córdoba, Argentina.
 
18.
Fargues J., Maniania N.K., Delmas J.C., Smits N. 1992. Influence de la température sur la croissance in vitro d’Hyphomycètes entomopathogènes. Agronomie 12 (7): 557–564. DOI: https://doi.org/10.1051/agro:1....
 
19.
Ferrand L., García M.L., Resende R.O., Balatti P.A., Dal Bó E. 2015. First report of a resistance-breaking isolate of Tomato spotted wilt virus infecting sweet pepper harboring the Tsw gene in Argentina. Plant Disease 99 (12): 1869. DOI: http://doi.org/10.1094/PDIS-02....
 
20.
Gao Y., Reitz S.R., Wang J., Tamez-Guerra P., Wang E., Xu X., Lei Z. 2012. Potential use of the fungus Beauveria bassiana against the western flower thrips Frankliniella occidentalis without reducing the effectiveness of its natural predator Orius sauteri (Hemiptera: Anthocoridae). Biocontrol Science and Technology 22 (7): 803–812. DOI: https://doi.org/10.1080/095831....
 
21.
Goettel M.S., St Leger R.J., Bhairi S., Jung M.K., Oakley B.R., Roberts D.W., Staples R.M. 1990. Pathogenicity and growth of Metarhizium anisopliae stably transformed to benomyl resistance. Current Genetics 17: 129–132. DOI: https://doi.org/10.1007/BF0031....
 
22.
Goettel M.S., Hajek A.E. 2001. Evaluation of nontarget effects of pathogens used for management of arthropods. p. 81–97. In: “Evaluating Indirect Ecological Effects of Biological Control” (E. Wajnberg, J.K. Scott, P.C. Quimy, eds.). CABBI Press. Wallingford, UK.
 
23.
González-García M.T., Posada Flórez F.J., Bustillo A.E. 1993. Desarrollo de un bioensayo para evaluar la patogenicidad de Beauveria bassiana sobre Hypothenemus hampei. Cenicafé (Colombia) 44 (3): 93–102.
 
24.
Gouli S., Gouli V., Skinner M., Parker B., Marcelino J., Shternshis M. 2008. Mortality of western flower thrips, Frankliniella occidentalis, under influence of single and mixed fungal inoculations. Journal of Agricultural Technology 4 (2): 37–47.
 
25.
Gouli V.V., Gouli S.Y., Skinner M., Shternshis M.V. 2009. Effect of the entomopathogenic fungi on mortality and injury level of western flower thrips, Frankliniella occidentalis. Archives of Phytopathology and Plant Protection 42 (2): 118–123. DOI: https://doi.org/10.1080/032354....
 
26.
Greenough D.R., Black L. 1990. Aluminum surfaced mulch: An approach to the control of tomato spotted wilt virus in Solanaceous crops. Plant Disease 74: 805–808.
 
27.
Ibarra-Jiménez L., Quezada-Martin R., Cedeno-Rubalcava B., Rio A.J.D., de la Rosa-Ibarra M. 2006. Watermelon response to plastic mulch and row covers. European Journal of Horticultural Science 71: 262–266.
 
28.
Inglis G.D., Enkerli J., Goettel M.S. 2012. Laboratory techniques used for entomopathogenic fungi: Hypocreales. p. 189–253. In: “Manual of Techniques in Invertebrate Pathology” (L.A. Lacey, ed.). Academic Press, London, UK.
 
29.
Jaber L.R., Araj S.E. 2018. Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biological Control 116: 53–61. DOI: https://doi.org/10.1016/j.bioc....
 
30.
Jacobson R.J., Chandler D., Fenlon J., Russell K.M. 2001. Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on cucumber plants. Biocontrol Science and Technology 11 (3): 391–400. DOI: https://doi.org/10.1080/095831....
 
31.
Kendrick B. 2000. The Fifth Kingdom. 3rd ed. Focus Publishing, Newburyport, USA, 386 pp.
 
32.
Lamont W.J. 2005. Plastics: Modifying the microclimate for the production of vegetable crops. Horticultural Technology 15 (3): 477–481. DOI: https://doi.org/10.21273/HORTT....
 
33.
Lee S.J., Kim S., Kim J.C., Lee M.R., Hossain M.S., Shin T.S., Kim T.H., Kim J.S. 2017. Entomopathogenic Beauveria bassiana granules to control soil-dwelling stage of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). BioControl 62 (5): 639–648. DOI: https://doi.org/10.1007/s10526....
 
34.
Liakatas A., Clark J.A., Monteith J.L. 1986. Measurements of the heat balance under plastic mulches. Part I. Radiation balance and soil heat flux. Agricultural and Forest Meteorology 36 (3): 227–239. DOI: https://doi.org/10.1016/0168-1....
 
35.
Ludwig S.W., Oetting R.D. 2002. Efficacy of Beauveria bassiana plus insect attractans for enhanced control of Frankliniella occidentalis (Thysanoptera: Thripidae). Florida Entomologist 85 (1): 270–272.
 
36.
Marín P., Posada F.J., González M.T., Bustillo A.E. 2000. Calidad biológica de formulaciones de Beauveria bassiana usadas en el control de la broca del café. Revista Colombiana de Entomología 26 (1–2): 17–23.
 
37.
Mendoza Ulloa J.G., Toledo Marquez J.J. 2019. El uso de agentes biológicos para el control de Frankliniella occidentalis (Pergante) en el cultivo de pepino (Cucumis sativus L.) Tesis de Grado. Escuela Agrícola Panamericana, Zamorano, Honduras.
 
38.
Molina N. 2017. Análisis económico del pimiento bajo invernadero en Corrientes, para la campaña 2018. Ediciones INTA. Publicación Técnica Nº 62.
 
39.
Momol M.T., Olson S.M., Funderburk J.E., Stavisky J., Marois J.J. 2004. Integrated management of tomato spotted wilt on field-grown tomatoes. Plant Disease 88: 882–890. DOI: https://doi.org/10.1094/PDIS.2....
 
40.
Mukawa S., Tooyama H., Ikegami T. 2011. Influence of humidity on the infection of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), by Beauveria bassiana. Applied Entomology and Zoology 46 (2): 255–264. DOI: https://doi.org/10.1007/s13355....
 
41.
Razzak M.A., Seal D.R. 2017. Effect of plastic mulch on the abundance of Thrips palmi Karny (Thysanoptera: Thripidae) and yield of jalapeno pepper in south Florida. Proceedings of the Florida State Horticultural Society 130: 124–128.
 
42.
Reitz S.R. 2009. Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Florida Entomologist 92 (1): 7–13. DOI: https://doi.org/10.1653/024.09....
 
43.
Riley D.G., Pappu H.R. 2000. Evaluation of tactics for management of thrips-vectored tomato spotted wilt virus in tomato. Plant Disease 84 (8): 847–852. DOI: https://doi.org/10.1094/PDIS.2....
 
44.
Riley D.G., Joseph S.V., Srinivasan R., Diffie S. 2011. Thrips vectors of Tospoviruses. Journal of Integrated Pest Management 2 (1): 1–10. DOI: https://doi.org/10.1603/IPM100....
 
45.
Saini E., Alvarado L. 2000. Insectos y ácaros perjudiciales al cultivo de tomate y sus enemigos naturales, Publicación del Instituto de Microbiología y Zoología Agrícola Nº1, INTA Castelar, Buenos Aires, Argentina.
 
46.
Saito T., Brownbridge M. 2016. Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biological Control 92: 92–100. DOI: https://doi.org/10.1016/j.bioc....
 
47.
Salas J. 2004. Evaluación de prácticas culturales para el control de Thrips palmi (Thysanoptera: Thripidae) en pimentón. Entomotropica 19 (1): 39–46.
 
48.
Shaalan R.S., Gerges E., Habib W., Ibrahim L. 2021. Endophytic colonization by Beauveria bassiana and Metarhizium anisopliae induces growth promotion effect and increases the resistance of cucumber plants against Aphis gossypii. Journal of Plant Protection Research 61 (4): 358–370. DOI: https://doi.org/10.24425/jppr.....
 
49.
Skinner M., Gouli S., Frank C.E., Parker B.L., Kim J.S. 2012. Management of Frankliniella occidentalis (Thysanoptera: Thripidae) with granular formulations of entomopathogenic fungi. Biological Control 63 (3): 246–252. DOI: https://doi.org/10.1016/j.bioc....
 
50.
Stavisky J., Funderburk J., Brodbeck B.Y., Olson S.M., Andersen P.C. 2002. Population dynamics of Frankliniella spp. and tomato spotted wilt incidence as influenced by cultural management tactics in tomato. Journal of Economic Entomology 95 (6): 1216–1221. DOI: https://doi.org/10.1603/0022-0....
 
51.
Summers C.G., Newton A.S., Mitchell J.P., Stapleton J.J. 2010. Population dynamics of arthropods associated with earlyseason tomato plants as influenced by soil surface microenvironment. Crop Protection 29 (3): 249–254. DOI: https://doi.org/10.1016/j.crop....
 
52.
Tarara J.M. 2000. Microclimate modification with plastic mulch. HortScience 35 (2):169–180.
 
53.
Toledo A.V., de Remes Lenicov A.M.M., López Lastra C.C. 2007. Pathogenicity of fungal isolates (Ascomycota: Hypocreales) against Peregrinus maidis, Delphacodes kuscheli (Hemiptera: Delphacidae) and Dalbulus maidis (Hemiptera: Cicadellidae), vectors of corn diseases. Mycopathologia 163 (4): 225–232. DOI: https://doi.org/10.1007/s11046....
 
54.
Toledo A.V., Franco M.E.E., Medina R., Marino de Remes Lenicov A.M., Balatti P.A. 2019. Assessment of the genetic diversity of Argentinean isolates of Beauveria bassiana (Ascomycota: Hypocreales) using ISSR markers. Journal of King Saud University Science 31 (4): 1264–1270. DOI: https://doi.org/10.1016/j.jksu....
 
55.
Tyler-Julian K., Funderburk J., Srivastava M., Olson S., Adkins S. 2018. Evaluation of a push-pull system for the management of Frankliniella species (Thysanoptera: Thripidae) in tomato. Insects 9: 187. DOI: https://doi.org/10.3390/insect....
 
56.
Ugine T.A., Wraight S.P., Sanderson J.P. 2006. Influences of impatiens pollen and exposure to Beauveria bassiana on bionomics of western flower thrips Frankliniella occidentalis. Biological Control 37 (2): 186–195. DOI: https://doi.org/10.1016/j.bioc....
 
57.
Vega F.E. 2018. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110 (1): 4–30. DOI: https://doi.org/10.1080/002755....
 
58.
Vestergaard S., Cherry A., Keller S., Goettel M. 2003. Hyphomycete fungi as microbial control agents. p. 35–62. In: “Environmental Impacts of Microbial Insecticides” (H.M.T. Hokkanen, A.E. Hajek, eds.). Kluwer Academic Publishers, Dordrecht, The Netherland.
 
59.
Villalobos Moya K., Vargas Martínez A., González Herrera A. 2011. Evaluación de Beauveria bassiana y Metarhizium anisopliae en condiciones de campo para el combate de trips en el cultivo de aguacate (Persea americana Mill) en San Pablo de León Cortés, Costa Rica. Métodos en Ecología y Sistemática 6 (3): 62–70.
 
60.
Vos J.G.M., Uhan T.S., Sutarya R. 1995. Integrated crop management of hot pepper (Capsicum spp.) under tropical lowland conditions: Effects of rice straw and plastic mulches on crop health. Crop Protection 14 (6): 445–452. DOI: https://doi.org/10.1016/0261-2....
 
61.
Walstad J., Anderson R.F., Stambaugh W.J. 1970. Effects of environmental conditions on two species of muscardine fungi (Beauveria bassiana and Metarhizium anisopliae). Journal of Invertebrate Pathology 16: 221–226.
 
62.
Weintraub P.G., Berlinger M.J. 2004. Physical control in greenhouses and field crops. p. 301–318. In: “Novel Approaches to Insect Pest Management” (A.R. Horowitz, I. Ishaaya, eds.). Springer, Heidelberg, Germany.
 
63.
Wraight S.P., Inglis D.G., Goettel M.S. 2007. Fungi. p. 223–248. In: “Field Manual of Techniques in Invertebrate Pathology. Application and Evaluation of Pathogens for Control of Insects and other Invertebrate Pests” (L.A. Lacey, H.K. Kaya, eds.). Springer, Dordrecht, The Netherlands.
 
64.
Wraight S.P., Ugine T.A., Ramos M.E., Sanderson J.P. 2016. Efficacy of spray applications of entomopathogenic fungi against western flower thrips infesting greenhouse impatiens under variable moisture conditions. Biological Control 97: 31–47. DOI: https://doi.org/10.1016/j.bioc....
 
65.
Wu S., Gao Y., Zhang Y., Wang E., Xu X., Lei Z. 2014. An entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri: Evidence from laboratory bioassay and scanning electron microscopic observation. PLoS ONE 9: e84732. DOI: https://doi.org/10.1371/journa....
 
66.
Wu S., Gao Y., Xu X., Goettel M.S., Zhong-ren L. 2015. Compatibility of Beauveria bassiana with Neoseiulus barkeri for control of Frankliniella occidentalis. Journal of Integrative Agriculture 14 (1): 98–105. DOI: https://doi.org/10.1016/S2095-....
 
67.
Wu S., Gao Y., Smagghe G., Xu X., Lei Z. 2016. Interactions between the entomopathogenic fungus Beauveria bassiana and the predatory mite Neoseiulus barkeri and biological control of their shared prey/host Frankliniella occidentalis. Biological Control 98: 43–51. DOI: https://doi.org/10.1016/j.bioc....
 
68.
Zhang X., Lei Z., Reitz S.R., Wu S., Gao Y. 2019. Laboratory and greenhouse evaluation of a granular formulation of Beauveria bassiana for control of Western flower thrips, Frankliniella occidentalis. Insects 10 (2): 58. DOI: https://doi.org/10.3390/insect....
 
69.
Zhang Z., Zheng C., Keyhani N.O., Gao Y., Wang J. 2021. Infection of the Western flower thrips, Frankliniella occidentalis, by the insect pathogenic fungus Beauveria bassiana. Agronomy 11: 1910. DOI: https://doi.org/10.3390/agrono....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top