ORIGINAL ARTICLE
Bacillus-based biological control of cotton seedling disease complex
 
More details
Hide details
1
King Abdulaziz City for Science and Technology (KACST), 6086, Riyadh, Saudi Arabia
 
2
Plant Pathology Research Institute, Agricultural Research Center (ARC), 12619, Giza, Egypt
 
 
Submission date: 2014-06-27
 
 
Acceptance date: 2014-10-19
 
 
Corresponding author
Kamel Ahmed Abd-Elsalam
Plant Pathology Research Institute, Agricultural Research Center (ARC), 12619, Giza, Egypt
 
 
Journal of Plant Protection Research 2014;54(4):340-348
 
KEYWORDS
TOPICS
ABSTRACT
To formulate an efficient and eco-friendly strategy for the management of cotton seedling disease complex, pot experiments were conducted and the efficiency of eight Bacillus strains against seven fungi involved in the disease were determined. A greenhouse evaluation of the interaction between fungal isolates and Bacillus strains was carried out. The evaluation revealed a very highly significant Bacillus strains x fungal isolates interaction for all the following parameters: preemergence damping-off, postemergence damping-off, survival, plant height, and dry weight. This interaction implies that a single strain of the Bacillus sp. can be highly effective against a fungal isolate, but may have only minimal effects on other fungal isolates. The results of the present study demonstrated that Bacillus circulans and B. coagulans were the most effective strains in controlling cotton seedling disease. Therefore, strains of Bacillus spp. should be tested against as many fungal isolates as possible. The testing will improve the chance of identifying Bacillus strains effective against several fungal isolates.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (41)
1.
Abdel-Fattah G.M., El-Haddad S.A., Hafez E.E., Rashad Y.M. 2011. Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiol. Res. 166 (4): 268–281.
 
2.
Akhtar S.M., Siddiqui Z.A. 2008. Glomus intraradices, Pseudomonas alcaligenes and Bacillus pumilus, effective agents for the control of root-rot disease complex of chickpea Cicer arietinum L. J. Gen. Plant Pathol. 74 (1): 53–60.
 
3.
Aly A.A., Tawfik A.E., Aida H.A. 1996. Effect of rhizobacteria on susceptibility of cotton seedlings to Sclerotium rolfsii and Rhizoctonia solani. J. Agric. Sci. Mansoura Univ. 21: 241–249.
 
4.
Amal-Asran A. 2001. Studies on the cotton rhizosphere microorganisms and their role in biocontrol of root infecting fungi. Ph.D. thesis, Faculty of Agriculture Cairo Univeristy, Cairo, Egypt, 155 pp.
 
5.
Arrebola E., Jacobs R., Korsten L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108 (2): 386–395.
 
6.
Asaka O., Shoda M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. J. Appl. Microbiol. 62 (11): 4081–4085.
 
7.
Broadbent P., Baker K.F., Waterworth Y. 1971. Bacteria and actinomycetes antagonistic to fungal root pathogens in Australian soils. Aust. J. Biol. Sci. 24 (5): 925–944.
 
8.
Chen X.H., Koumoutsi A., Scholz R., Borriss R. 2009. More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J. Mol. Microbiol. Biotechnol. 16: 14–24.
 
9.
Czaczyk K., Trojanowska K., Stachowiak B. 2002. Inhibition of ergosterol biosynthesis in fungal plant pathogens by Bacillus sp. Polish J. Environ. Stud. 11 (5): 593–597.
 
10.
El-Barougy E., Nemat M., Azza-Turky A., Hoda-Hamed A. 2009. Antagonistic activity of selected strains of Rhizobacteria against Macrophomina phaseolina of soybean plants. American-Eurasian J. Agric. Environ. Sci. 5 (3): 337–347.
 
11.
El-Hassan S.A., Gowen S.R., Pembroke B. 2013. Use of Trichoderma hamatum for biocontrol of lentil vascular wilt disease: efficacy, mechanisms of interaction and future prospects. J. Plant Prot. Res. 53 (1): 12–26.
 
12.
Gordon-lennox G., Walther D., Gindrat D. 1987. Use of antagonistic for seed dressing: effectiveness and mode of action against pathogens of damping-off. Bulletin European and Mediterranean Plant Protection Organization (EPPO) 17: 631–637.
 
13.
Grosch R., Junge H., Krebs B., Bochow H. 1999. Use of Bacillus subtilis as a biocontrol agent. III. Influence of Bacillus subtilis on fungal root diseases and on yield in soilless culture. J. Plant Dis. Prot. 106 (6): 568–580.
 
14.
Guo Q., Dong W., Li S., Lu X., Wang P., Zhang X., Wang Y., Ma P. 2013. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol. Res. 169 (7–8): 533–540.
 
15.
Hagedorn C.W., Gould D., Bardinelli T.R. 1989. Rhizobacteria of cotton and their repression of seedling disease pathogen. Appl. Environ. Microbiol. 55 (11): 2793–2797.
 
16.
Harris A.R., Schisler D.A., Correll R.L., Ryder M.H. 1994. Soil bacteria selected for suppression of Rhizoctonia solani, and growth promotion in bedding plants. Soil Biol. Biochem. 26 (9): 1249–1255.
 
17.
Huang X., Zhang N., Yong X., Yang X.Y., Shen Q.R. 2012. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol. Res. 167 (3): 135–43.
 
18.
Jian G.L., Jiang Z.Q., Xu L.P., Sun F.F., Guo J.H. 2008. Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. BioControl 53 (6): 931–944.
 
19.
Jiang Z.Q., Guo Y.H., Li S.M. 2006. Evaluation of biocontrol efficiency of different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. BioControl 36 (2): 216–223.
 
20.
Kim W.G., Weon H.Y., Lee S.Y. 2008. In vitro antagonistic effects of Bacilli isolates against four soilborne plant pathogenic fungi. Plant Pathol. J. 24 (1): 52–57.
 
21.
Krieg N.R., Holt J.G. 1984. Bergey, s Manual of Systemic Bacteriology. Williams and Wikins, Baltimore, USA, 722 pp.
 
22.
Landa B.B., Herves A., Bettiol W., Jimenez-Diaz R.M. 1997. Antagonistic activity of bacteria from chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica 25 (4): 305–318.
 
23.
Ling N., Huang Q., Guo S., Shen Q. 2010. Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f. sp. niveum. Plant Soil 341 (1–2): 485–493.
 
24.
López-Valdez F., Fernández-Luqueno ̃ F., Ceballos-Ramírez J.M., Marsch R., Olalde-Portugal V., Dendooven L. 2011. A strain of Bacillus subtilis stimulates sunflower growth (Helianthus annuus L.) temporarily. Sci. Hortic. 128 (4): 499–505.
 
25.
Mahaffee W.F., Backman P.A. 1993. Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathology 83: 1120–1125.
 
26.
Mansoori M., Heydari A., Hassanzadeh N., Rezaee S., Naraghi L. 2013. Evaluation of Pseudomonas and Bacillus bacterial antagonists for biological control of cotton Verticillium wilt disease. J. Plant Prot. Res. 35 (2): 154–157.
 
27.
Merriman P.R., Price R.D., Baker K.F., Kollmorgen J.F., Piggott T., Ridge E.H. 1975. Effect of Bacillus and Streptomyces spp. Applied to seed. p. 130–133. In: “Biology and Control of Soil-Borne Plant Pathogens” (G.W. Bruehl, ed.). The American Phytopathological Society, St. Paul, MN, USA, 216 pp.
 
28.
Mohd S.A., Uzma S., Zaki A.S. 2010. Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes, and Rhizobium sp. on lentil. Turk. J. Biol. 34: 1–7.
 
29.
Omar M.R., Gomaa E.Z., Aly A.A., El-Samawaty A.M.A. 2013. Differential antagonism of Bacillus spp. against isolates of Macrophomina phaseolina. Rom. Biotechnol. Lett. 18 (5): 8703–8714.
 
30.
Ongena M., Jourdan E., Adam A., Paquot M., Brans A., Joris B., Arpigny J.L., Thonart P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9 (4): 1084–1090.
 
31.
Pleban S., Ingel F., Chet I. 1995. Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. Eur. J. Plant Pathol. 101 (6): 665–672.
 
32.
Ramarathnam R., Dilantha Fernando W.G., de Kievit T. 2011. The role of antibiosis and induced systemic resistance, mediated by strains of Pseudomonas chlororaphis, Bacillus cereus and B. amyloliquefaciens, in controlling blackleg disease of canola. BioControl 56 (2): 225–235.
 
33.
Raza W., Yang X.M., Wu H.S., Wang Y., Xu Y.C., Shen Q.R. 2009. Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f. sp. nevium. Eur. J. Plant Pathol. 125 (3): 471–483.
 
34.
Sallam N.A., Riad S.N., Mohamed M.S., El-salam A.S. 2013. Formulations of Bacillus spp. and Pseudomonas fluorescens for biocontrol of cantaloupe root rot caused by Fusarium solani. J. Plant Prot. Res. 53 (3): 295–300.
 
35.
Samavat S., Besharati H., Behboudi K. 2011. Interactions of Rhizobia cultural filtrates with Pseudomonas fluorescens on bean damping-off control. J. Agric. Sci. Technol. 13 (6): 965–976.
 
36.
Samavat S., Heydari A., Zamanizadeh H. R., Rezaee S., Aliabadi A.A. 2014. A comparison between Pseudomonas aureofaciens (chlororaphis) and P. fluorescens in biological control of cotton seedling damping-off disease. J. Plant Prot. Res. 54 (2): 115–121.
 
37.
Schippers B., Bakker A.W., Pahm B. 1987. Interactions of deleterious and benificial rhizosphere microoganisims and the effect of cropping prctices. Annu. Rev. Phytopathol. 25: 339–358.
 
38.
Swain M.R., Ray R.C. 2009. Biocontrol and other beneficial activities of Bacillus subtilis isolated from cow dung microflora. Microbiol. Res. 164 (2): 121–130.
 
39.
Wan P., Huang Y., Tabashnik B.E., Huang M., Wu K. 2012. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China. PLoS One 7: e42004. DOI:10.1371/journal.pone.0042004.
 
40.
Watkins G.M. 1981. Compendium of Cotton Disease. American Phytopathological Society, APS Press, St. Paul, USA, 87 pp.
 
41.
Zaim S., Belabid L., Bellahcene M. 2013. Biocontrol of chickpea Fusarium wilt by Bacillus spp. rhizobacteria. J. Plant Prot. Res. 53 (2): 177–183.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top