ORIGINAL ARTICLE
Assessment of control strategies against Cydia pomonella (L.) in Morocco
More details
Hide details
1
National Institute of Agricultural Research, Meknés Regional Center, P.O. Box 578, Meknés, Marocco
2
Hassan II Institute of Agronomy and Veterinary Medicine, Rabat-Institutes, P.O. Box 6202, Rabat, Marocco
Acceptance date: 2016-02-25
Corresponding author
Salma EL Iraqui
National Institute of Agricultural Research, Meknés Regional Center, P.O. Box 578, Meknés, Marocco
Journal of Plant Protection Research 2016;56(1):82-88
KEYWORDS
TOPICS
ABSTRACT
The codling moth, Cydia pomonella (L.), is the key pest of apple production worldwide. In Morocco, there is a sustainable presence of codling moth causing considerable damage in apple orchards despite frequent applications of broad spectrum insecticides. For 12 years, sexual trapping and chemical control were performed and the development of the codling moth population was analysed in an orchard which was in the region of Azrou. The efficacy of some insecticides (azinphos-methyl, chlorpyriphos-ethyl, diflubenzuron, thiacloprid, methoxyfenozide, spinosad, and deltamethrin) was also evaluated on neonate larvae and compared with a laboratory sensitive strain. This procedure was done to assess an eventual resistance in Moroccan populations. The action threshold was usually exceeded, leading to an intensive chemical control, with an average frequency of 9 to 13 days. The chemical control was done according to the action persistence time of the insecticides and the trap captures. However, those two parameters are compromised in Moroccan conditions because of the high summer temperatures which disrupt the action of insecticides and exacerbate populations. The pheromone traps may become ineffective and useless. Neonate larvae were resistant to five insecticides out of seven. Such results suggest the presence of a cross resistance in local strains. Overall, the insect resistance, the functioning of the sexual traps, and some insecticides properties (persistence action, pre-harvest interval) are the key factors that could explain the failure to control these moths under Moroccan conditions.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (24)
1.
Abott W. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.
2.
Almatni W. 2003. Survey and study of natural enemies of codling moth Cydia pomonella L., in As-Sweida, and evaluation of some Bio-agent Measures. Ph.D. thesis, Faculty of Agriculture Damascus University, Syria, pp. 22–59.
3.
Audemard H. 1992. Population dynamics in codling moth. p. 329–338. In: “Tortricid Pests: Their Biology, Natural Enemies and Control” (L.P.S. Van der Geest, H.H. Evenhuis, eds.). Elsevier Science Publishers, Amsterdam, The Netherlands, 808 pp.
4.
Boivin T., Sauphanor B. 2007. Phénologie et optimisation de la protection contre le carpocapse des pommes. [Phenology and optimisation of protection against codling moth]. Innovations Agronomiques 1: 23–31. (in French).
5.
Brunner J.F., Gut L.J., Knight A. 1993. Transition of apple and pear orchards to pheromone-based pest management system. Washington Horticultural Association Proceedings 88: 169–175.
6.
Dunley J.E., Welter S.C. 2000. Correlated insecticide cross-resistance in azinphosmethyl resistant codling moth (Lepidoptera: Tortricidae). Journal of Economic Entomology 93 (3): 955–962.
7.
Guennelon G., Audemard H., Fremond J.C., Idrissi Ammari M.A. 1981. Progrès réalisés dans l’élevage permanent du carpocapse (Laspeyresia pomonella L.) sur milieu artificiel. [Progress achieved in permanent rearing of codling moth (Laspeyresia pomonella L.) on an artificial diet]. Agronomie 1: 59–64. (in French).
8.
Hmimina M. 2007. Les ravageurs des arbres fruitiers: Le carpocapse des pommes et des poires. [The pests of fruit trees: The codling moth on apples and pears]. Bulletin Mensuel d’Information et de Liaison PNTTA158, Novembre 2007. (in French).
9.
Hmimina M., El Iraqui S. 2015. Cycle évolutif et voltinisme du Carpocapse (Cydia pomonella L., Lepidoptera, Tortricidae) exprimés par le piégeage sexuel et les degrés-jours dans la région d’Azrou. [Life cycle and voltinism of codling moth (Cydia pomonella L., Lepidoptera, Tortricidae) based on sexual trapping and degree days in Azrou region]. Revue Marocaine des Sciences Agronomiques et Vétérinaires 3 (2): 1. (in French, with English summary).
10.
Le Goff G., Boundy P.J., Yen J.L., Sofer L., Lind R., Sabourault C., Madi-Ravazzi L., Ffrench-Constant R.H. 2003. Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochemistry and Molecular Biology 33 (7): 701–708.
11.
Moffitt H.R., Westigard P.H., Mantey K.D., Vandebaan H.E. 1988. Resistance to diflubenzuron in the codling moth (Lepidoptera: Tortricidae). Journal of Economic Entomology 81 (6): 1511–1515.
12.
Miletic N., Tamas N., Graora D. 2011. The control of codling moth in apple trees. Zemdirbyste=Agriculture 98 (12): 213–218.
13.
Mota-Sanchez D., Wise J.C., Poppen R.V., Gut L.J., Hollingworth R.M. 2008. Resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity. Pest Management Science 64 (9): 881–890.
14.
Reyes M., Barros-Parada W., Ramirez C.C., Fuentes-Contreras E. 2015. Organophosphate resistance and its main mechanism in populations of codling moth (Lepidoptera: Tortricidae) from Central Chile. Journal of Economic Entomology 108 (1): 1–9.
15.
Reyes M., Sauphanor B. 2008. Resistance monitoring in codling moth: a need for standardization. Pest Management Science 64 (9): 945–953.
16.
Reyes M., Franck P., Charmillot P.J., Ioriatti C., Olivares J., Pasqualini E. 2007. Diversity of insecticide resistance mechanisms and spectrum in European populations of the codling moth, Cydia pomonella. Pest Management Science 63 (9): 890–902.
17.
Ricci B. 2009. Dynamique spatiale et dégâts de carpocapse dans la basse vallée de la Durance. [Spatial dynamics and damage of codling moth in the low Durance valley]. Ph.D. thesis, Ecole Doctorale Sibaghe, Avignon, France, 227 pp. (in French).
18.
Rodriguez M.A., Bosh D., Avilla J. 2011. Resistance of Spanish codling moth (Cydia pomonella) populations to insecticides and activity of detoxifying enzymatic systems. Entomolgia Experimentalis Applicata 138 (3): 184–192.
19.
Sauphanor B., Bouvier J.C., Brosse V. 1998. Spectrum of insecticide resistance in Cydia pomonella (Lepidoptera: Tortricidae) in Southeastern France. Journal of Economic Entomology 91 (6): 1225–1231.
20.
Sauphanor B., Brosse V., Bouvier J.C., Speich P., Micoud A., Martinet C. 2000. Monitoring resistance to diflubenzuron and deltamethrin in French codling moth populations (Cydia pomonella). Pest Management Science 56 (1): 74–82.
21.
Setyobudi L. 1989. Seasonality of codling moth, Cydia pomonella L. (Lepidoptera, Olethreutidae) in the Willamette Valley of Oregon: Role of photoperiod and temperature. Ph.D. thesis, Oregon State University, Corvallis, USA, 142 pp.
22.
Shel’Deshova G.G. 1967. Ecological factors determining distribution of the codling moth Laspeyresia pomonella (Lepidoptera: Tortricidae). Entomological Review 46: 349–361.
23.
Steinberg S., Podoler H., Applebaum S.W. 1992. Diapause induction in the codling moth, Cydia pomonella: Effect of prediapuse temperatures. Entomologia Experimentalis et Applicata 62 (2): 131–137.
24.
Thwaite W.G., Williams D.G., Hately A.M. 1993. Extent and significance of azinphos-methyl resistance in codling moth in Australia. Pest Control & Sustainable Agriculture. The Common Wealth Scientific and Industrial Research Organisation (CSIRO), Australia 93: 166–168.