ORIGINAL ARTICLE
Assessment of applying an integrated pest management strategy
to control the raspberry leaf and bud mite, Phyllocoptes gracilis (Nal.) and its effect
on the raspberry leaf metabolites
More details
Hide details
1
Department of Plant Protection, National Institute of Horticultural Research in Skierniewice, Skierniewice, Poland
2
Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
3
Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2023-09-26
Acceptance date: 2023-12-20
Online publication date: 2024-01-30
Corresponding author
Gerard Podedworny
Department of Plant Protection, National Institute of Horticultural Research in Skierniewice, Skierniewice, Poland
Journal of Plant Protection Research 2024;64(1):52-60
HIGHLIGHTS
- The effectiveness of acequinocyl, fenpyroximate, spirodiclofen, abamectin, silicone polymers and orange oil in controlling the raspberry leaf and bud mite (Phyllocoptes gracilis).
- The impact of selected active substances on defense-related leaves metabolites in raspberry plants.
- Contribution to the developement of a raspberry leaf and bud mite control strategy based on Integrated Pest Management principles.
KEYWORDS
TOPICS
ABSTRACT
In the years 2018‒2020, the effectiveness of three synthetic active substances (acequinocyl,
fenpyroximate, spirodiclofen), one substance derived from Streptomyces spp. (abamectin),
a plant extract (orange oil) and silicone polymers in controlling Phyllocoptes gracilis in two
Polish raspberry plantations (v. ‘Glen Ample’) was assessed. All the substances showed
high and comparable efficacy against the tested pest, significantly reducing its population.
However, their effects occurred at different times after the application. The strongest immediate
control was shown by silicone polymers, followed by abamectin and spirodiclofen.
The full effect of fenpyroximate application was visible after approx. 2 weeks, while acequinocyl
was effective 3‒4 weeks after the application. Moreover, the content of phenolic compounds,
sterols and triterpenoids was determined in leaves of plants treated with spirodiclofen,
orange oil and silicone polymers. The observed increase in the content of salicylic
acid and changes in the content of triterpenoids in leaves may indicate a stimulating effect
of the substances to the natural defense processes of plants.
RESPONSIBLE EDITOR
Magdalena Karbowska-Dzięgielewska
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (47)
3.
Baldwin I.T., Halitschke R., Paschold A., von Dahl C.C., Preston C.A. 2006. Volatile signaling in plant-plant interactions: "Talking Trees" in the Genomic Era. Science 311 (5762): 812–815. DOI:
https://www.science.org/doi/10....
4.
Brito D.R., Pinto-Zevallos D.M., de Sena Filho J.G., Coelho C.R., Nogueira P.C., de Carvalho H.W., Teodoro A.V. 2021. Bioactivity of the essential oil from sweet orange leaves against the coconut mite Aceria guerreronis (Acari: Eriophyidae) and selectivity to a generalist predator. Crop Protection 148: 105737. DOI:
https://doi.org/10.1016/j.crop....
5.
Cárdenas P.D., Almeida A., Bak S. 2019. Evolution of structural diversity of triterpenoids. Frontiers in Plant Science 10: 1523. DOI:
https://doi.org/10.3389/fpls.2....
7.
Chalker-Scott L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology 70 (1): 1–9. DOI:
https://doi.org/10.1111/j.1751....
8.
Chauhan S.S., Agrawal S., Srivastava A. 2013. Effect of imidacloprid insecticide residue on biochemical parameters in potatoes and its estimation by HPLC. Asian Journal of Pharmaceutical and Clinical Research 6 (7): 114–117.
9.
Cheng Y., Zhang S., Wang J., Zhao Y., Zhang Z. 2022. Research progress in the synthesis and application of surfactants based on trisiloxane, Journal of Molecular Liquid 362: 119770. DOI:
https://doi.org/10.1016/j.moll....
10.
Cieślińska M., Tartanus M. 2014. Molecular diversity of raspberry leaf blotch virus – a new pathogen of Rubus sp. plants in Poland. p. 162. In: Proceedings of the 11th Conference of the European Foundation for Plant Pathology, “Healthy plants – healthy people”. Cracow, Poland.
11.
Duran R.E., Kilic S., Coskun Y. 2015. Response of maize (Zea mays L. saccharata Sturt) to different concentration treatments of deltamethrin. Pesticide Biochemistry and Physiology 124: 15–20. DOI:
https://doi.org/10.1016/j.pest....
12.
EU Commission 2020. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. COM(2020) 381 final. [Available at:
https://eur-lex.europa.eu/lega...] [accessed on: 2 August 2023].
13.
Favaro R., Resende J.T., Gabriel A., Zeist A.R., Cordeiro E.C., Júnior J.L. 2019. Salicylic acid: resistance inducer to two-spotted spider mite in strawberry crop. Horticultura Brasileira 37 (1): 60–64. DOI:
https://doi.org/10.1590/S0102-....
14.
Filgueiras C.C., Martins A.D., Pereira R.V., Willett D.S. 2019. The ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. International Journal of Molecular Sciences 20 (23): 5851. DOI:
https://doi.org/10.3390/ijms20....
15.
Ford K.A., Casida J.E., Chandran D., Gulevich A.G., Okrent R.A., Durkin K.A., Sarpong R., Bunnelle E.M., Wildermuth M.C. 2010. Neonicotinoid insecticides induce salicylate-associated plant defense responses. Proceedings of the National Academy of Sciences of the United States of America 107: 17527–17532. DOI:
https://doi.org/10.1073/pnas.1....
16.
Forrest G.I., Bendall D.S. 1969. The distribution of polyphenols in the tea plant (Camellia sinensis L.). Biochemical Journal 113 (5): 741–755.
17.
Ghosh S. 2016. Biosynthesis of structurally diverse triterpenes in plants: the role of oxidosqualene cyclases. Proceedings of the Indian National Science Academy 82: 1189–1210. DOI:
https://doi.org/10.16943/ptins....
18.
Gordon S.C., Taylor C.E. 1977. Chemical control of the raspberry leaf and bud mite, Phyllocoptes Gracilis (Nal.) (Eriophyidae). Journal of Horticultural Science 52 (4): 517–523. DOI:
https://doi.org/10.1080/002215....
19.
Hernández-Vázquez L., Palazón Barandela J., Navarro-Ocaña A. 2012. The pentacyclic triterpenes α, β-amyrins: a review of sources and biological activities. p. 487‒502. In: “Phytochemicals: A Global Perspective of Their Role in Nutrition and Health” (A. Venketeshwer Rao, ed.). IntechOpen. DOI:
https://doi.org/10.5772/1387.
20.
Homayoonzadeh M., Haghighi S.R., Hosseininaveh V., Talebi K., Roessner U., Winters A. 2022. Effect of spirotetramat application on salicylic acid, antioxidative enzymes, amino acids, mineral elements, and soluble carbohydrates in cucumber (Cucumis sativus L.). Biology and Life Sciences Forum 11 (1): 3. DOI:
https://doi.org/10.3390/IECPS2....
21.
Jha Y., Mohamed H.I. 2022. Plant secondary metabolites as a tool to investigate biotic stress tolerance in plants: a review. Gesunde Pflanzen 74: 771–790. DOI:
https://doi.org/10.1007/s10343....
22.
Khare S., Singh N.B., Singh A., Hussain I., Niharika K., Yadav V., Bano C., Yadav R.K., Amist N. 2020. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. Journal of Plant Biology 63: 203–216. DOI:
https://doi.org/10.1007/s12374....
23.
Li C.Z., Sun H., Gao Q., Bian F.Y., Noman A., Xiao W.H., Zhou G.X., Lou Y.G. 2020. Host plants alter their volatiles to help a solitary egg parasitoid distinguish habitats with parasitized hosts from those without. Plant Cell Environment 43 (7): 1740–1750. DOI:
https://doi.org/10.1111/pce.13....
24.
Linder C., Baroffio C., Mittaz C. 2008. Postharvest control of the raspberry leaf and bud mite Phyllocoptes gracilis. Revue Suisse de Viticulture, Arboriculture et Horticulture 40 (2): 105–108.
26.
McGavin W.J., Mitchell C., Cock P.J., Wright K.M., MacFarlane S.A. 2012. Raspberry leaf blotch virus, a putative new member of the genus Emaravirus, encodes a novel genomic RNA. Journal of General Virology 93 (2): 430–437. DOI:
https://doi.org/10.1099/vir.0.....
27.
Milenković S., Marčić D. 2012. Raspberry leaf and bud mite (Phyllocoptes gracilis) in Serbia: the pest status and control options. Acta Horticulturae 946 (40): 253–256. DOI:
https://doi.org/10.17660/ActaH....
28.
Minguely C., Norgrove L., Kopp C., Baroffo C. 2019. Distribution of the eriophyoid mite Phyllocoptes gracilis (Acari: Eriophyidae) on raspberries (Rubus idaeus) in Switzerland. p. 16–22. In: Proceedings of the 9th Workshop on Integrated Soft Fruit Production. 5–7 September 2018, Riga, Latvia.
29.
Minguely C., Norgrove L., Burren A., Christ B. 2021. Biological control of the raspberry eriophyoid mite Phyllocoptes gracilis using entomopathogenic fungi. Horticulturae 7 (3): 54. DOI:
https://doi.org/10.3390/hortic....
30.
Osei R., Yang C., Boamah S., Boakye T.A. 2021. Role of salicylic acid in plant defense mechanisms against pathogens. International Journal of Creative and Innovative Research in All Studies 4 (6): 31–45.
31.
Pimentel Farias A., dos Santos M.C., Viteri Jumbo L.O., Oliveira E.E., de Lima Nogueira P.C., de Sena Filho J.G., Teodoro A.V. 2020. Citrus essential oils control the cassava green mite, Mononychellus tanajoa, and induce higher predatory responses by the lacewing Ceraeochrysa caligata. Industrial Crops and Products 145: 112151. DOI:
https://doi.org/10.1016/j.indc....
33.
Rogowska A., Stpiczyńska M., Pączkowski C., Szakiel A. 2022. The influence of exogenous jasmonic acid on the biosynthesis of steroids and triterpenoids in Calendula officinalis plants and hairy root culture. International Journal of Molecular Sciences 23: 12173. DOI:
https://doi.org/10.3390/ijms23....
34.
Sharma I., Bhardwaj R., Pati P.K. 2013. Stress modulation response of 24-epibrassinolide against imidacloprid in an elite indica rice variety Pusa Basmati-1. Pesticide Biochemistry and Physiology 105 (2): 144–153. DOI:
https://doi.org/10.1016/j.pest....
35.
Sharma A., Kumar V., Kumar R., Shahzad B., Thukral A.K., Bhardwaj R. 2018. Brassinosteroid-mediated pesticide detoxification in plants. Cogent Food and Agriculture 4: 1. DOI:
https://doi.org/10.1080/233119....
36.
Solecka D., Boudet A.M., Kacperska A. 1999. Phenylpropanoid and anthocyanin changes in low-temperature treated winter oilseed rape leaves. Plant Physiology and Biochemistry 37 (6): 491−496. DOI:
https://doi.org/10.1016/S0981-....
37.
Solecka D., Kacperska A. 2003. Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiologia Plantarum 119 (2): 253–262. DOI:
https://doi.org/10.1034/j.1399....
38.
Somasundaran P., Mehta S.C., Purohit P. 2006. Silicone emulsions. Advances in Colloid and Interface Science 128–130: 103–109.
39.
Sparks T.C., Nauen R. 2015. IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology 121: 122–128. DOI:
https://doi.org/10.1016/j.pest....
40.
Stavrinides M.C., Mills N.J. 2009. Demographic effects of pesticides on biological control of Pacific spider mite (Tetranychus pacificus) by the western predatory mite (Galendromus occidentalis). Biological Control 48 (3): 267–273. DOI:
https://doi.org/10.1016/j.bioc....
41.
Szántóné Veszelka M., Fajcsi M. 2003. Changes of dominance of arthropod pest species in Hungarian raspberry plantations. p. 29–36. In: Proceedings of the IOBC/WPRS Working Group "Integrated Plant Protection in Fruit Crops, Subgroup Soft Fruits". 18–21 September 2001, Dundee, UK.
42.
Szczepaniec A., Raupp M.J., Parker R.D., Kerns D., Eubanks M.D. 2013. Neonicotinoid insecticides alter induced defenses and increase susceptibility to spider mites in distantly related crop plants. PLOS ONE 8 (5): e62620. DOI:
https://doi.org/10.1371/journa....
43.
Tapken W., Murphy A.S. 2015. Membrane nanodomains in plants: capturing form, function, and movement. Journal of Experimental Botany 66: 1573–1586. DOI:
https://doi.org/10.1093/jxb/er....
44.
Tartanus M., Łabanowska B.H., Sas D., Murgrabia A., Dyki B. 2015. Przebarwiacz malinowy Phyllocoptes gracilis (Nal.) – występowanie, szkodliwość oraz możliwości zwalczania. [Raspberry leaf and bud mite Phyllocoptes gracilis (Nal.) – occurrence, harmfulness and possibility to control]. Zeszyty Naukowe Instytutu Ogrodnictwa 23: 111–125.
45.
Trandem N., Vereide R., Bøthun M. 2010. Autumn treatment with sulphur or rapeseed oil as part of a management strategy for the raspberry leaf and bud mite Phyllocoptes gracilis in ‘Glen Ample’. p. 113–119. In: Proceedings of the IOBC/WPRS Working Group "Integrated Plant Protection in Fruit Crops, Subgroup Soft Fruits". 20–23 September 2010, Budapest, Hungary.
47.
Xia X.J., Huang Y.Y., Wang L., Huang L.F., Yu Y., Zhou Y.L., Yu Y.L., Zhou Y.H., Yu J.Q. 2006. Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pesticide Biochemistry and Physiology 86 (1): 42–48. DOI:
https://doi.org/10.1016/j.pest....