ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Bacillus velezensis NC318 produced potent antifungal compounds against the plant pathogenic fungus Sclerotium rolfsii Sacc.
  • The secreted antifungal compounds could inhibit mycelial growth and sclerotia germination of the pathogen.
  • Lipopeptides, polyketides, and siderophores are involved in the control of the pathogen.
  • B. velezensis NC318 could be a promising biological control agent.
KEYWORDS
TOPICS
ABSTRACT
In a previous study, the endophytic Bacillus velezensis NC318 was isolated from the rhizo- sphere of date palm and showed strong antifungal activity against the soil-borne plant pathogenic fungus, Sclerotium rolfsii Sacc, the causal agent of Southern blight. The poten- tial of the Bacillus genus in the inhibition of plant pathogens is mainly due to the produc- tion of certain bioactive compounds. In the present study, secondary metabolites extracted from the cell-free supernatant of strain NC318 showed strong antifungal activity on the mycelial growth and germination of S. rolfsii sclerotia in vitro. With 50 μl of bioactive com- pounds crude extracts, the mycelial growth inhibition rate was 97% and any germination of sclerotia was reported. Chemical analysis of the secondary metabolite crude extracts performed by high performance liquid chromatography coupled with mass spectrometry (HPLC/MS), revealed that the secreted bioactive compounds belonged to the family of li- popeptides (iturin, fengycin, surfactin), polyketides (bacillaene, macrolactin, difficidin and bacilysin) and siderophores (bacillibactin). These results provide a better understanding of the biocontrol mechanism of the bacteria strain B. velezensis NC318 against the soil fungal pathogens, especially S. rolfsii root rot.
RESPONSIBLE EDITOR
Joanna Puławska
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (31)
1.
Ab Rahman S.F.S., Singh E., Pieterse C.M., Schenk P.M. 2018. Emerging microbial biocontrol strategies for plant pathogens. Plant Science 267: 102–111. DOI: https://doi.org/10.1016/j.plan....
 
2.
Azabou M.C., Gharbi Y., Medhioub I., Ennouri K., Barham H., Tounsi S., Triki M.A. 2020. The endophytic strain Bacillus velezensis OEE1: An efficient biocontrol agent against Verticillium wilt of olive and a potential plant growth promoting bacteria. Biological Control 142: 104168. DOI: https://doi.org/10.1016/j.bioc....
 
3.
Bidima M.G.S., Chtaina N., Ezzahiri B., El Guilli M. 2021. Evaluation of the antagonistic potential of bacterial strains isolated from Moroccan soils for the biological control of Sclerotium rolfsii Sacc. International Journal of Food Science and Agriculture 5 (4): 608–616. DOI: http://dx.doi.org/10.26855/ijf....
 
4.
Carmona-Hernandez S., Reyes-Pérez J.J., Chiquito-Contreras R.G., Rincon-Enriquez G., Cerdan-Cabrera C.R., Hernandez-.
 
5.
Montiel L.G. 2019. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: a review. Agronomy 9 (3): 121. DOI: https://doi.org/10.3390/agrono....
 
6.
Caulier S., Gillis A., Colau G., Licciardi F., Liépin M., Desoignies N., Modrie P., Legrève A., Mahillon J., Bragard C. 2018. Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology 9: 143. DOI: https://doi.org/10.3389/fmicb.....
 
7.
Caulier S., Nannan C., Gillis A., Licciardi F., Bragard C., Mahillon J. 2019. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Frontiers in Microbiology 302. DOI: https://doi.org/10.3389/fmicb.....
 
8.
Caza M., Kronstad J. 2013. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Frontiers in Cellular and Infection Microbiology 3: 80. DOI: https://doi.org/10.3389/fcimb.....
 
9.
Chen L., Heng J., Qin S., Bian K. 2018. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS One 13 (6): e0198560. DOI: https://doi.org/10.1371/journa....
 
10.
Chen L., Wu Y.D., Chong X.Y., Xin Q.H., Wang D.X., Bian K. 2020. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii. Journal of Applied Microbiology 128 (3): 803–813. DOI: https://doi.org/10.1111/jam.14....
 
11.
Darma R., Purnamasari I.M., Agustina D., Pramudito T.E., Sugiharti M., Suwanto A. 2016. A strong antifungal-producing bacteria from bamboo powder for biocontrol of Sclerotium rolfsii in melon (Cucumis melo var. amanta). Journal of Plant Pathology & Microbiology 7: 334. DOI: http://dx.doi.org/10.4172/2157....
 
12.
Fan B., Wang C., Song X., Ding X., Wu L., Wu H., Gao X., Borriss R. 2018. Bacillus velezensis FZB42 in 2018: the grampositive model strain for plant growth promotion and biocontrol. Frontiers in Microbiology 9: 2491. DOI: https://doi.org/10.3389/fmicb.....
 
13.
Jiang C.H., Liao M.J., Wang H.K., Zheng M.Z., Xu J.J., Guo J.H. 2018. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biological Control 126: 147–157. DOI: https://doi.org/10.1016/j.bioc....
 
14.
Jin Q., Jiang Q., Zhao L., Su C., Li S., Si F., Zhou C., Mu Y., Xiao M. 2017. Complete genome sequence of Bacillus velezensis S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities. Journal of Biotechnology 259: 199–203. DOI: https://doi.org/10.1016/j.jbio....
 
15.
Kim M.J., Shim C.K., Park J.H. 2021. Control efficacy of Bacillus velezensis AFB2-2 against potato late blight caused by Phytophthora infestans in organic potato cultivation. The Plant Pathology Journal 37 (6): 580. DOI: https://doi.org/10.5423%2FPPJ.....
 
16.
Li X., Munir S., Xu Y., Wang Y., He Y. 2021. Combined mass spectrometry-guided genome mining and virtual screening for acaricidal activity in secondary metabolites of Bacillus velezensis W1. RSC Advances 11 (41): 25441–25449. DOI: https://doi.org/10.1039/D1RA01....
 
17.
Mácha H., Marešová H., Juříková T., Švecová M., Benada O., Škríba A., Palyzová A., Baránek M., Novotný Č. 2021. Killing effect of Bacillus velezensis FZB42 on a Xanthomonas campestris pv. campestris (Xcc) strain newly isolated from cabbage Brassica oleracea convar. capitata (L.): a metabolomic study. Microorganisms 9 (7): 1410. DOI: https://doi.org/10.3390/microo....
 
18.
Nifakos K., Tsalgatidou P.C., Thomloudi E.E., Skagia A., Kotopoulis D., Baira E., Delis C., Papadimitriou K., Markellou E., Venieraki A., Katinakis P. 2021. Genomic analysis and secondary metabolites production of the endophytic Bacillus velezensis Bvel1: a biocontrol agent against Botrytis cinerea causing bunch rot in post-harvest table grapes. Plants 10 (8): 1716. DOI: https://doi.org/10.3390/plants....
 
19.
Ongena M., Jacques P., Touré Y., Destain J., Jabrane A., Thonart P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied Microbiology and Biotechnology 69 (1): 29–38. DOI: https://doi.org/10.1007/s00253....
 
20.
Ortiz A., Sansinenea E. 2020. Macrolactin antibiotics: amazing natural products. Mini Reviews in Medicinal Chemistry 20 (7): 584–600. DOI: https://doi.org/10.2174/138955....
 
21.
Rabbee M.F., Ali M.D., Choi J., Hwang B.S., Jeong S.C., Baek K.H. 2019. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24 (6): 1046. DOI: https://doi.org/10.3390/molecu....
 
22.
Sansinenea E., Ortiz A. 2011. Secondary metabolites of soil Bacillus spp. Biotechnology Letters 33 (8): 1523–1538. DOI: https://doi.org/10.1007/s10529....
 
23.
Sarwar A., Brader G., Corretto E., Aleti G., Abaidullah M., Sessitsch A., Hafeez F.Y. 2018. Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS One 13 (6): e0198107. DOI: https://doi.org/10.1371/journa....
 
24.
Sibponkrung S., Kondo T., Tanaka K., Tittabutr P., Boonkerd N., Teaumroong N., Yoshida K.I. 2017. Genome sequence of Bacillus velezensis S141, a new strain of plant growthpromoting rhizobacterium isolated from soybean rhizosphere. Genome Announcements 5 (48): e01312–17. DOI: https://doi.org/10.1128/genome....
 
25.
Teixeira G.M., Mosela M., Nicoletto M.L.A., Ribeiro R.A., Hungria M., Youssef K., Higashi A.Y., Mian S., Perreira A.S. De Oliveira A.G. 2021. Genomic insights into the antifungal activity and plant growth-promoting ability in Bacillus velezensis CMRP 4490. Frontiers in Microbiology 11: 3495. DOI: https://doi.org/10.3389/fmicb.....
 
26.
Wang B., Liu C., Yang X., Wang Y., Zhang F., Cheng H., Zhang L., Liu H. 2021. Genomics-guided isolation and identification of active secondary metabolites of Bacillus velezensis BA-26. Biotechnology & Biotechnological Equipment 35 (1): 895–904. DOI: https://doi.org/10.1080/131028....
 
27.
Wu L., Wu H., Chen L., Yu X., Borriss R., Gao X. 2015. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Scientific Reports 5 (1): 1–9. DOI: https://doi.org/10.1038/srep12....
 
28.
Xu W., Zhang L., Goodwin P.H., Xia M., Zhang J., Wang Q., Liang J., Sun R., Wu C., Yang L. 2020. Isolation, identification, and complete genome assembly of an endophytic Bacillus velezensis YB-130, potential biocontrol agent against Fusarium graminearum. Frontiers in Microbiology 11: 3151. DOI: https://doi.org/10.3389/fmicb.....
 
29.
Yamamoto S., Shiraishi S., Suzuki S. 2015. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13‐3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Letters in Applied Microbiology 60 (4): 379–386. DOI: https://doi.org/10.1111/lam.12....
 
30.
Zhang D., Yu S., Zhao D., Zhang J., Pan Y., Yang Y., Yang Z., Zhu J., Zhao Y., Li R. 2021. Inhibitory effects of non-volatiles lipopeptides and volatiles ketones metabolites secreted by Bacillus velezensis C16 against Alternaria solani. Biological Control 152: 104421. DOI: https://doi.org/10.1016/j.bioc....
 
31.
Zouari I., Jlaiel L., Tounsi S., Trigui M. 2016. Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biological Control 100: 54–62. DOI: https://doi.org/10.1016/j.bioc....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top