ORIGINAL ARTICLE
Antibacterial activity improvement in a point mutant K45E of the pepper defensin J1-1
More details
Hide details
1
Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, A.C., Yucatán, Mexico
2
Facultad de Ciencias, Universidad Nacional Autónoma de México, Unidad Multidisciplinaria de Docencia e Investigación, UMIDI-Sisal, Mexico
3
Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
These authors had equal contribution to this work
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2024-01-27
Acceptance date: 2024-03-14
Online publication date: 2024-10-01
Corresponding author
Georgina Estrada
Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
Journal of Plant Protection Research 2024;64(4):287-297
HIGHLIGHTS
- Recombinantly expressed point mutant J1-1K45E is active against Pseudomonas aeruginosa.
- This is the first report for an antibacterial plant defensin activity impovement by reducing defensin positive
- charge.
- J1-1_K45E is active against Staphylococcus aureus.
- Defensin activity improvement might be related to changes in oligomerization or lipid selectivity in J1-1K45E.
KEYWORDS
TOPICS
ABSTRACT
Plant defensins have attracted much attention in the development of new antimicrobials.
Yet the elucidation of their modes of action against bacterial pathogens is still incipient.
The available recombinant systems to obtain plant defensin mutants with enhanced or optimized
antibacterial activity may help to accelerate the knowledge of their action mechanisms
and their applications against pathogens. In this work, the point mutant defensin
K45E (J1-1_K45E) was obtained by the same recombinant system as J1-1 defensin. The
characterized peptide conserved antibacterial activity against the gram-negative Pseudomonas
aeruginosa and showed a dose improvement relative to J1-1. Furthermore, the
mutant J1-1_K45E exhibited a gain in function against the gram-positive Staphylococcus
aureus. Finally, to correlate structural changes and antibacterial activity, two properties involved
in defensins’ modes of action were measured. First, the mutant J1-1_K45E which
oligomerizes in a distinct pattern was compared with J1-1 and secondly, J1-1_K45E shows
a distinct lipid binding profile because it binds preferentially to phosphatidylserine. Together,
our findings support the idea that amino acid sequence variability in plant defensins superfamily
can generate major functional changes, and highlight the relevant role of charged
residues, beyond the g-core loop, in the improvement of J1-1 antibacterial activity.
FUNDING
This work was supported partially by CONAHCyT
303045. GAMP received the CONAHCyT scholarship
No. 775005.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (28)
1.
Aerts A.M., François I.E.J.A., Cammue B.P.A., Thevissen K. 2008. The mode of antifungal action of plant, insect and human defensins. Cellular and Molecular Life Sciences 65 (13): 2069–2079. DOI:
https://doi.org/10.1007/s00018....
2.
Baxter A.A., Richter V., Lay F.T., Poon I.K.H., Adda C.G., Veneer P.K., Phan T.K., Bleackley M.R., Anderson M.A., Kvansakul M., Hulett M.D. 2015. The tomato defensin TPP3 binds phosphatidylinositol (4,5)-bisphosphate via a conserved dimeric cationic grip conformation to mediate cell lysis. Molecular and Cellular Biology 35 (11): 1964–1978. DOI:
https://doi.org/10.1128/MCB.00....
3.
Calianese D.C., Birge R.B. 2020. Biology of phosphatidylserine (PS): Basic physiology and implications in immunology, infectious disease, and cancer. Cell Communication and Signaling 18 (1): 41. DOI:
https://doi.org/10.1186/s12964....
4.
Carvalho A. de O., Gomes V.M. 2009. Plant defensins - prospects for the biological functions and biotechnological properties. Peptides 30 (5): 1007–1020. DOI:
https://doi.org/10.1016/j.pept....
5.
Cools T.L., Struyfs C., Cammue B.P., Thevissen K. 2017. Antifungal plant defensins: Increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiology 12: 441–454. DOI:
https://doi.org/10.2217/fmb-20....
6.
Fiser A., Šali A. 2003. MODELLER: generation and refinement of homology-based protein structure models. Methods in Enzymology 374: 461–491. MODELLER. Retrieved
https://salilab.org/modeller/.
7.
Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., Bairoch A. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31: 3784–3788. DOI:
https://web.expasy.org/protpar....
8.
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. 2005. Protein identification and analysis tools on the expasy server. The Proteomics Protocols Handbook, Humana Press, 571–607.
9.
Guillén-Chable F., Arenas-Sosa I., Islas-Flores I., Corzo G., Martinez-Liu C., Estrada G. 2017. Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus. Protein Expression and Purification 136: 45–51. DOI:
https://doi.org/10.1016/j.pep.....
10.
Idris F.N., Nadzir M.M. 2023. Multi-drug resistant ESKAPE pathogens and the uses of plants as their antimicrobial agents. Archives of Microbiology 205 (4): 115. DOI:
https://doi.org/10.1007/s00203....
11.
Ishaq N., Bilal M., Iqbal H.M.N. 2019. Medicinal potentialities of plant defensins: a review with applied perspectives. Medicines 6 (1): 29. DOI:
https://doi.org/10.3390/medici....
12.
Islam K.T., Velivelli S.L.S., Berg R.H., Oakley B., Shah D.M. 2017. A novel bi-domain plant defensin MtDef5 with potent broad-spectrum antifungal activity binds to multiple phospholipids and forms oligomers. Scientific Reports 7 (1) DOI:
https://doi.org/10.1038/s41598....
13.
Järvå M., Lay F.T., Hulett M.D., Kvansakul M. 2017. Structure of the defensin NsD7 in complex with PIP2 reveals that defensin: lipid oligomer topologies are dependent on lipid type. FEBS Letters 591 (16): 2482–2490. DOI:
https://doi.org/10.1002/1873-3....
14.
Järvå M., Lay F.T., Phan T.K., Humble C., Poon I.K.H., Bleackley M.R., Anderson M.A., Hulett M.D., Kvansakul M. 2018. X-ray structure of a carpet-like antimicrobial defensin-phospholipid membrane disruption complex. Nature Communications 9 (1): 1962. DOI:
https://doi.org/10.1038/s41467....
15.
Kerenga B.K., McKenna J.A., Harvey P.J., Quimbar P., Garcia-Ceron D., Lay F.T., Phan T.K., Veneer P.K., Vasa S., Parisi K., Shafee T.M.A., van der Weerden N.L., Hulett M.D., Craik D.J., Anderson M.A., Bleackley M.R. 2019. Salt-Tolerant Antifungal and Antibacterial Activities of the Corn Defensin ZmD32. Frontiers in Microbiology 10. DOI:
https://www.frontiersin.org/ar....
16.
Kvansakul M., Lay F.T., Adda C.G., Veneer P.K., Baxter A.A., Phan T.K., Poon I.K.H., Hulett M.D. 2016. Binding of phosphatidic acid by NsD7 mediates the formation of helical defensin-lipid oligomeric assemblies and membrane permeabilization. Proceedings of the National Academy of Sciences of the United States of America 113: 11202–11207. DOI:
https://doi.org/10.1073/pnas.1....
17.
Lacerda A., Vasconcelos É., Pelegrini P., Grossi-de-Sa M.F. 2014. Antifungal defensins and their role in plant defense. Frontiers in Microbiology 5: 116. DOI:
https://www.frontiersin.org/ar....
18.
Mahmood T., Yang P.C. 2012. Western Blot: technique, theory, and trouble shooting. North American Journal of Medical Sciences 4 (9): 429–434. DOI:
https://doi.org/10.4103/1947-2....
19.
Ochiai A., Ogawa K., Fukuda M., Suzuki M., Ito K., Tanaka T., Sagehashi Y., Taniguchi M. 2020. Crystal structure of rice defensin OsAFP1 and molecular insight into lipid-binding. Journal of Bioscience and Bioengineering 130: 6–13. DOI:
https://doi.org/10.1016/j.jbio....
20.
Pacheco-Cano R.D., Salcedo-Hernández R., Casados-Vázquez L.E., Wrobel K., Bideshi D.K., Barboza-Corona J.E. 2020. Class I defensins (BraDef) from broccoli (Brassica oleracea var. italica) seeds and their antimicrobial activity. World Journal of Microbiology & Biotechnology 36 (2): 30. DOI:
https://doi.org/10.1007/s11274....
21.
Poon I.K., Baxter A.A., Lay F.T., Mills G.D., Adda C.G., Payne J.A., Phan T.K., Ryan G.F., White J.A., Veneer P.K., van der Weerden N.L., Anderson M.A., Kvansakul M., Hulett M.D. 2014. Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. eLife 3: e01808. DOI:
https://doi.org/10.7554/eLife.....
22.
Sathoff A.E., Lewenza S., Samac D.A. 2020. Plant defensin antibacterial mode of action against Pseudomonas species. BMC Microbiology 20 (1): 173. DOI:
https://doi.org/10.1186/s12866....
23.
Sathoff A.E., Velivelli S., Shah D.M., Samac D.A. 2019. Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology 109 (3): 402–408. DOI:
https://doi.org/10.1094/PHYTO-....
24.
Scilletta N.A., Pezzoni M., Desimone M.F., Soler-Illia G.J.A.A., Bellino M.G., Catalano P.N. 2021. Determination of antibacterial activity of film coatings against four clinically relevant bacterial strains. Bio-Protocol 11 (2): e3887. DOI:
https://doi.org/10.21769/BioPr....
26.
Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., Ouellette M. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. 2018. The Lancet Infectious Diseases 18 (3): 318–327. DOI:
https://doi.org/10.1016/S1473-....
28.
Velivelli S.L.S., Islam K.T., Hobson E., Shah D.M. 2018. Modes of action of a bi-domain plant defensin mtdef5 against a bacterial pathogen Xanthomonas campestris. Frontiers in Microbiology 9. DOI:
https://www.frontiersin.org/ar....