ORIGINAL ARTICLE
Antagonistic fluorescent Pseudomonads: rhizobacteria with suppressive and plant growth promoting properties against Phytophthora colocasiae, the causal agent of taro leaf blight
More details
Hide details
1
Department of Biological Sciences, Higher Teacher Training College, University of Yaounde 1, Yaounde, Cameroon
2
Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
3
Department of Microbiology, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2023-03-29
Acceptance date: 2023-07-06
Online publication date: 2023-08-11
Corresponding author
Samuel Arsene Ntyam Mendo
Department of Biological Sciences, Higher Teacher Training College, University of Yaounde 1,Yaounde, Cameroon
Journal of Plant Protection Research 2023;63(3):350-365
HIGHLIGHTS
- This paper talks about friendly environmental fight against Phytophthora colocasiae, using fluorescent Pseudomonas rhizobacteria. It is research article providing new outcomes about immunization and growth stimulation of taro by Pseudomonas rhizobacteria in Cameroon. This is the first manuscript about the potential use of fluorescent Pseudomonas, in the fight against P. colocasiae.
KEYWORDS
TOPICS
ABSTRACT
Taro leaf blight caused by Phytophthora colocasiae affects plant health and is a major threat
to taro culture in Cameroon. Chemical fertilizers used often harm the ecosystem. Plant
growth-promoting rhizobacteria (PGPR) are better alternatives that increase plant growth
promotion and suppress phytopathogens. In the present study, a total of 67 fluorescent
Pseudomonas spp. was characterized by 17.91, 5.97, and 4.47% populations of P. fluorescens,
P. chlororaphis, and P. putida, respectively, among the most represented. More than
36% of bacteria showed antagonistic potential through the production of both diffusible
and volatile compounds. Some of them (03) exhibited antagonistic activity in dual culture
against P. colocasiae with a diameter greater than 13 mm. These rhizobacteria produced
a significant amount of siderophore, IAA, SA, HCN, protease, lipases, and cellulases. For
the pot experiment, treatment by Pseudomonas significantly increased the enzymatic
activity involved in the resistance of taro, such as peroxidase (PO), polyphenol oxidase
(PPO), and phenylalanine ammonia-lyase (PAL). The two antagonists also increased plant
growth parameters of taro such as chlorophyll, plant height, shoot length, total leaf surface,
fresh root biomass, and fresh leaf biomass. These findings showed that fluorescent Pseudomonas
have an intriguing and undeniable potential in the fight against P. colocasiae, which
could lead to the development of a biopesticide in the future.
ACKNOWLEDGEMENTS
The authors are grateful to the University of Dschang
and the research unit of Natural Substances, (University
of Douala) for facilities and some consumables used
in this work.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (42)
1.
Achancho V. 2013. Review and analysis of national investment strategies and agricultural policies in central Africa: the Case of Cameroun. FAO/IFAD: 15–36.
2.
Ali S., Hameed S., Shahid M., Iqbal M., Lazarovits G., Imran A. 2020. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiological Research 232: 126389. DOI:
https://doi.10.1016/j.micres.2....
3.
Anand A., Chinchilla D., Tan C., Mène-Saffrané L., L’Haridon F., Weisskopf L. 2020. Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Phytophthora infestans. Microorganisms 8 (8): 1144. DOI:
https://doi. 10.3390/microorganisms8081144.
4.
Audenaert K., Pattery T., Cornelis P., Höfte M. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Molecular Plant-Microbe Interactions 15 (11): 1147–1156. DOI:
https://doi.10.1094/MPMI.2002.....
5.
Benhamou N., Kloepper, J.W., Quadt-Hallman, A., Tuzun, S., 1996. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology 112 (3): 919–929. DOI:
https://doi.10.1104/pp.112.3.9....
6.
Cattelan A.J., Hartel P.G., Fuhrmann J.J. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal 63 (6): 1670–1680. DOI:
https://doi. 10.2136/sssaj1999.6361670x.
7.
Constabel C.P., Bergey D.R., Ryan C.A. 1995. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proceedings of the National Academy of Sciences 92 (2): 407–411. DOI:
https://doi. 10.1073/pnas.92.2.407.
8.
Couturier J., Jacquot J.-P., Rouhier N. 2013. Toward a refined classification of class I dithiol glutaredoxins from poplar: biochemical basis for the definition of two subclasses. Frontiers in Plant Science 518 (4): 1–14 DOI:
https://doi.10.3389/fpls.2013.....
9.
David B.V., Chandrasehar G., Selvam P.N. 2018. Pseudomonas fluorescens: a plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. p. 221–243. In: “Crop Improvement through Microbial Biotechnology”. Elsevier 221–243.
10.
de Groot A., Filloux A., Tommassen J. 1991. Conservation of xcp genes, involved in the two-step protein secretion process, in different Pseudomonas species and other gram negative bacteria. Molecular and General Genetics MGG 229 (2): 278–284. DOI:
https://doi.org/10.1007/BF0027....
11.
Digat B., Gardan L. 1987. Characterization, variability and selection of beneficial strains of Pseudomonas fluorescens and Pseudomonas putida. Bulletin OEPP/EPPO (UK). DOI:
https://doi.org/10.1111/j.1365....
12.
Garcia-Brugger A., Lamotte O., Vandelle E., Bourque S., Lecourieux D., Poinssot B., Wendehenne D., Pugin A. 2006. Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions 19 (7): 711–724. DOI:
https://doi. 10.1094/MPMI-19-0711.
13.
Glickmann E., Dessaux Y. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology 61 (2): 793–796. DOI:
https://doi.10.1128/aem.61.2.7....
14.
Hammerschmidt R., Nuckles E.M., Kuć J. 1982. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology 20 (1): 73–82. DOI:
https://doi.10.1016/0048-4059(....
15.
Jacques M.-A.1994. Écologie quantitative et physiologie de la communauté bactérienne épiphylle de Cichorium endivia var. latifolia L (PhD Thesis). Paris 11.
16.
Jacques P., Ongena M., Gwose I., Seinsche D., Schröder H., Delfosse P., Honart P., Taraz K., Budzikiewicz H. 1995. Structure and characterization of isopyoverdin from Pseudomonas putida BTP1 and its relation to the biogenetic pathway leading to pyoverdines. Z. Naturforsch (50): 622–629. DOI:
https://doi.org/10.1515/znc-19....
17.
Javed S., Javaid A., Hanif U., Bahadur S., Sultana S., Shuaib M., Ali S. 2021. Effect of necrotrophic fungus and PGPR on the comparative histochemistry of Vigna radiata by using multiple microscopic techniques. Microscopy Research and Technique 84 (11): 2737–2748. DOI:
https://doi. 10.1002/jemt.23836.
18.
Karnwal A., Kumar V. 2012. Influence of plant growth promoting rhizobacteria (pgpr) on the growth of chickpea (Cicer arietinum L.). Annals Food Science and Technology 13 (2): 1–6.
19.
Khan I.H., Arshad J. 2022. DNA cleavage of the fungal pathogen and production of antifungal compounds are the possible mechanisms of action of biocontrol agent Penicillium italicum against Macrophomina phaseolina. Mycologia 114 (1): 24–34. DOI:
https://doi. 10.1080/00275514.2021.1990627.
20.
Latour X., Lemanceau P. 1997. Carbon and energy metabolism of oxidase-positive saprophytic fluorescent Pseudomonas spp. Agronomie 9 (17): 427–443.
21.
Lemanceau P., Expert D., Gaymard F., Bakker P., Briat J.-F. 2009. Role of iron in plant–microbe interactions. Advances in Botanical Research 51: 491–549. DOI:
https://doi.10.1016/S0065-2296....
22.
Mbong G.A., Fokunang C.N., Fontem L.A., Bambot M.B., Tembe E.A. 2013. An overview of Phytophthora colocasiae of cocoyams: A potential economic disease of food security in Cameroon. Discourse Journal of Agriculture and Food Sciences 1: 140–145.
23.
Meena B., Marimuthu T., Vidhyasekaran P., Velazhahan R. 2001. Biological control of root rot of groundnut with antagonistic Pseudomonas fluorescens strains. [Biologische Bekämpfung der Wurzelfäule an Erdnuss mit antagonistischen Pseudomonas fluorescens-Stämmen]. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz [Journal of Plant Diseases and Protection] 108 (4): 369–381.
24.
Meyer J.M., Abdallah M.A. 1978. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Microbiology 107 (2): 319–328. DOI:
https://doi.10.1099/00221287-1....
25.
Mezaache-Aichour S., Guechi A., Nicklin J., Drider D., Prevost H., Strange R.N. 2012. Isolation, identification and antimicrobial activity of pseudomonads isolated from the rhizosphere of potatoes growing in Algeria. Journal of Plant Pathology 94 (1): 89–98. DOI:
https://www.jstor.org/stable/4....
26.
Misra R.S., Sharma K., Mishra A.K. 2008. Phytophthora leaf blight of Taro (Colocasia esculenta) – a review. Asian Australas Journal of Plant Science and Biotechnology 2 (2): 55–63.
27.
Ntyam S.A., Kouitcheu Mabeku L.B., Tounkara Lat S., Tchameni Nguemezi S., Ngono Ngane R.A., Sameza M.L. 2018. Abiotic conditions on growth of Pseudomonas fluorescens (DS17R) and its ability to produce secondary metabolites (including phenazines) against Phytophthora colocasiae, the causal agent of taro leaf blight. Austin Journal of Biotechnology & Bioengineering 5 (2): 1095. DOI:
https://doi. 10.26420/austinJbiotechnolbioeng.2018.1095.
28.
Oni F.E., Esmaeel Q., Onyeka J.T., Adeleke R., Jacquard C., Clement C., Gross H., Ait Barka E., Höfte M. 2022. Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules 27 (2): 372. DOI:
https://doi. 10.3390/molecules27020372.
29.
Palleroni N. 1984. Bergey’s manual of systematic bacteriology, KRIEG, NR and HOLT, JG. The Williams and Wilkins. Baltimore.
30.
Ramamoorthy V., Raguchander T., Samiyappan R. 2002. Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant and Soil 239: 55–68. DOI:
https://doi.org/10.1023/A:1014....
31.
Raunkiaer C. 1934. The life forms of plants and statistical plant geography. Oxford University Press, London, UK.
32.
Sameza M.L., Bedine Boat M.A., Tchameni Nguemezi S., Nguemnang Mabou L.C., Jazet Dongmo P.M., Boyom F.F., Menut C. 2014. Potential use of Eucalyptus globulus essential oil against Phytophthora colocasiae the causal agent of taro leaf blight. European Journal of Plant Pathology 140 (2): 243–250. DOI:
https://doi.org/10.1007/s10658....
33.
Schwyn B., Neilands J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160 (1): 47–56. DOI:
https://doi. 10.1016/0003-2697(87)90612-9.
34.
Sharf W., Javaid A., Shoaib A., Khan I.H. 2021. Induction of resistance in chili against Sclerotium rolfsii by plant growth promoting rhizobacteria and Anagallis arvensis. Egyptian Journal of Biological Pest Control 31: 16. DOI:
https://doi.org/10.1186/s41938....
35.
Shoaib A., Ali H., Javaid A., Awan Z.A. 2020. Contending charcoal rot disease of mungbean by employing biocontrol Ochrobactrum ciceri and zinc. Physiology and Molecular Biology of Plants 26 (7): 1385–1397. DOI:
https://doi. 10.1007/s12298-020-00817-y.
36.
Shternshis M., Shpatova T., Belyaev A. 2016. Effect of two biological formulations based on Bacillus subtilis and Pseudomonas fluorescens on control of Didymella applanata, the causal agent of red raspberry cane spur blight. International Journal of Agronomy 2016: 1–6 DOI:
https://doi.10.1155/2016/27971....
37.
Singleton V.L., Rossi J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture 16: 144–158. DOI: https//doi.10.5344/ajev.1965.16.3.144.
38.
Smibert R.M. 1994. Phenotypic characterization. Methods for General and Molecular Bacteriology: 607–654.
39.
Trivedi P., Pandey A., Palni L.M.S. 2008. In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiological Research 163 (3): 329–336. DOI:
https://doi. 10.1016/j.micres.2006.06.007.
40.
van Hulten M., Pelser M., Van Loon L.C., Pieterse C.M., Ton J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences 103 (14): 5602–5607. DOI:
https://doi.10.1073/pnas.05102....
41.
Vincent M.N., Harrison L.A., Brackin J.M., Kovacevich P.A., Mukerji P., Weller D.M., Pierson E.A. 1991. Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Applied and Environmental Microbiology 57 (10): 2928–2934. DOI:
https://doi. 10.1128/aem.57.10.2928-2934.1991.
42.
Whetten R.W., Sederoff R.R. 1992. Phenylalanine ammonia-lyase from loblolly pine: purification of the enzyme and isolation of complementary DNA clones. Plant Physiology 98 (1): 380–386. DOI:
https://doi. 10.1104/pp.98.1.380.