ORIGINAL ARTICLE
Activity of aspartate aminotransferase and alanine aminotransferase within winter triticale seedlings infested by grain aphid (Sitobion avenae F.)
 
More details
Hide details
1
Siedlce University of Natural Sciences and Humanities Department of Biochemistry and Molecular Biology
 
2
Siedlce University of Natural Sciences and Humanities Department of Microbiology Prusa 12, 08-110 Siedlce, Poland
 
 
Corresponding author
Cezary Sempruch
Siedlce University of Natural Sciences and Humanities Department of Biochemistry and Molecular Biology
 
 
Journal of Plant Protection Research 2012;52(3):364-367
 
KEYWORDS
TOPICS
ABSTRACT
Amino acid level is well known indicator of plant resistance to aphids. Our earlier studies showed that grain aphid ( Sitobion avenae F.) infestation caused changes in the activity of the enzymes connected with amino acid biosynthesis and the transformation to defensive secondary metabolites within triticale tissues. However, there are not data on the significance of aminotransferases in these processes. The aim of our study was the quantification of changes in the activity of aspartate aminotransferase (AspAT) and alanine aminotransferase (AlaAT) in winter triticale seedlings caused by the feeding of the grain aphid. The study results showed that aphid feeding caused an increase in AlaAT activity and a decrease in AspAT activity within tissues of the triticale. The induced mechanisms of the triticale resistance to the grain aphid are discussed
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (22)
1.
Blackmer J.L., Byrne D.N. 1999. The effect of Bemisia tabacion amino acid balance in Cucumis melo. Entomol. Exp. Appl. 93 (3): 315–319.
 
2.
Ciepiela A.P., Sempruch C., Jóźwiak B. 1995. Metabolizm fenyloalaniny i tyrozyny w kłosach pszenżyta indukowany żerowaniem mszycy zbożowej. Mat. 35. Sesji Nauk. Inst. Ochr. Roślin, cz. 2: 82–84.
 
3.
Cole R.A. 1997. The relative importance of glucosinolates and amino acids to the development of two aphidpests Brevicoryne brassicae and Myzus persicae on wild and cultivated brassica species. Entomol. Exp. Appl. 85 (2): 121–133.
 
4.
Eckardt N.A. 2004. Aminotransferases confer „enzymatic resistance” to downy mildew in melon. Plant Cell 15 (1): 1–4.
 
5.
Gajewska E., Wielanek M., Bergier K., Skłodowska M. 2009. Nikiel-induced depression of nitrogen assimilation in wheat roots. Acta Physiol. Plant. 31 (6): 1291–1300.
 
6.
Goggin F.L. 2007. Plant-aphid interactions: molecular and ecological perspectives. Cur. Opin. Plant Biol. 10 (4): 399–408.
 
7.
Miyashita Y., Dolferus R., Ismond K.P., Good A.G. 2007. Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J. 49 (6): 1108–1121.
 
8.
Reitman S., Frankel S. 1957. A colorimetric method for the determination of serum glutamic oxalactic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28 (1): 56–63.
 
9.
Rozbicka B., Dixon A.F.G., Leszczyński B., Bąkowski R. 1994. Development of the grain aphid, Sitobion avenae (Fabr.) on winter triticale. Aphids and Other Homopterous Insects 4: 89–94.
 
10.
Sandström J., Moran N. 1999. How nutritionally imbalanced is phloem sap for aphids? Ent. Exp. Appl. 91 (1): 203–210.
 
11.
Sandström J.P., Telang A., Moran N.A. 2000. Nutritional enhancement of host plant by aphids – a comparison of three aphid species on grasses. J. Insect Physiol. 46 (1): 33–40.
 
12.
Sempruch C., Ciepiela A.P. 2001. The activity of nitrate and nitrite reductase in winter triticale settled by grain aphid, Sitobion avenae (F.). Aphids and Other Homopterous Insects 8: 213–221.
 
13.
Sempruch C., Ciepiela A.P. 2002. Changes in content and amino acids composition of protein of winter triticale selected cultivars caused by grain aphid feeding. J. Plant Prot. Res. 42 (1): 37–44.
 
14.
Sempruch C., Leszczyński B., Wójcicka A., Kowalczyk E. 2007. Changes in the activity of glutamine synthetase in tissues of winter triticale seedlings caused by Sitobion avenae(F.) feeding. Aphids and Other Hemipterous Insects 13: 183–190.
 
15.
Sempruch C., Leszczyński B., Wójcicka A., Makosz M., Chrzanowski G., Matok H. 2009. Changes in activity of triticale tyrosine decarboxylase caused by grain aphid feeding. Pol. J. Environ. Stud. 18 (5): 901–906.
 
16.
Sempruch C., Leszczyński B., Wójcicka A., Makosz M., Matok H., Chrzanowski G. 2010. Changes in activity of lysine decarboxylase within winter triticale in response to grain aphid feeding. Acta Biol. Hung. 61 (4): 512–515.
 
17.
Sempruch C., Michalak A., Leszczyński B. 2011. Effect of Sitobion avenae(Fabricius, 1775) feeding on the free amino acid content within selected parts of triticale plants. Aphids and Other Hemipterous Insects 17: 139–145.
 
18.
Sempruch C., Wójcicka A., Makosz M., Leszczyński B. 2008. Changes in activity of ornithine decarboxylase in winter triticale caused by grain aphid feeding. Zesz. Probl. PNR 524: 401–408.
 
19.
Sousa C.A.F., Sodek L. 2003. Alanine metabolism and alanine aminotransferase activity in soybean (Glycine max) during hypoxia of the root system and subsequent return to normoxia. Environ. Exp. Bot. 50 (1): 1–8.
 
20.
StatSoft Inc., Statistica. 2010. Data Analysis Software System version 9.0, www.statsoft.com.
 
21.
Stern D.L. 2008. Aphids. Cur. Biol. 18 (12): 504–505.
 
22.
Taler D., Galperin M., Benjamin I., Cohen Y., Kenigsbuch D. 2004. Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16 (1): 172–184.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top