REVIEW
A review of the efficacy of biofumigation agents in the control of soil-borne plant diseases
More details
Hide details
1
Plant Pathology Department, National Research Centre (NRC), Dokki, Giza, Egypt
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2021-06-27
Acceptance date: 2021-09-09
Online publication date: 2022-03-04
Journal of Plant Protection Research 2022;62(1):1-11
HIGHLIGHTS
- Soil amendement with organic matter suppressive major soil borne plant diseases
- Organic amendements as eco-friendly agents and alternatives to methyl bromide
- Biofumigation crops and essential oils are a promising of soil disinfestation
KEYWORDS
TOPICS
ABSTRACT
The fumigant pesticide methyl bromide (MB) is no longer used in most countries due to its
carcinogenic effects. It is followed by carbon bisulfide and chloropicrin which are the most
effective liquid synthetic chemicals in pesticide formulations. They are converted to gas to
penetrate soil particles and eliminate plant pests such as insects, weeds, and causal plant
diseases of viruses, bacteria, fungi, and nematodes under greenhouse, field and storage
conditions. These fumigants are non specific pesticides and highly hazardous to humans,
environmental resources, and deplete the ozone layers. Furthermore, increasing the cost
of crop production by inceasing the amount of pesticides treatments was increased the
cost of research on the alternatives of green pesticides from eco-friendly agents, natural
organic soil amendments of organic wastes, green manure, biofumigation crops, compost,
and essential oils, as well as formulations, are examples of this. Organic fumigants that are
non toxic, non-residual, highly degradable and decomposable are available as eco-friendly
alternatives to chemical pesticides to manage soil borne pests and diseases of plants. This
article summarizes the development of applicable eco-friendly formulations which use
natural organic materials to disinfest soil in order to reduce plant diseases caused by soil-
-borne pathogens.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (110)
1.
Abbasi P.A., Cuppels D.A., Lazarovits G. 2003. Effect of foliar applications of neem oil and fish emulsion on bacterial spot and yield of tomatoes and peppers. Candian Journal of Plant Pathology 25: 41–48. DOI: 10.1080/07060660309507048.
2.
Abdallah I., Yehia R., Kandil M.A. 2020. Biofumigation potential of Indian mustard (Brassica juncea) to manage Rhizoctonia solani. Egyptian Journal of Biological Pest Control 30: 99. DOI:
https://doi.org/10.1186/s41938....
3.
Abdel Rahman F.H., Alaniz N.M., Saleh M.A. 2013. Nematicidal activity of terpenoids. Journal of Enviromental Science and Health, Part B 48: 16–22. DOI: 10.1080/03601234.012.716686.
4.
Abdel-Rahman A.A., Kesba H.H., Al-Sayed A.A. 2019. Activity and reproductive capability of Meloidogyne incognita and sunflower growth response as influenced by root exudates of some medicinal plants. Biocatalysis and Agricultural Biotechnology 22: 101–418. DOI:
https://doi.org/10.1016/j.bcab....
5.
Aissani N., Urgeghe P.P., Oplos C., Saba M., Tocco G.,. Petreeto G.L., Eloh K., Urania Menkissoglu-Spiroudi U., Ntalli N., Caboni P. 2015. Nematicidal activity of the volatilome of Eruca sativa on Meloidogyne incognita. Journal of Agricultural and Food Chemistry 63: 6120–6125. DOI: 10.1021/acs.jafc.5b02425.
6.
Alves A.O., Santos M.M.B., Santos T.C.G., Souza E.B., Mariano R.L.R. 2014. Biofumigation with essential oils for managing bacterial wilt of sweet peppers. Journal of Plant Pathology 96: 363–367. DOI: 10.4454/JPP.V96I2.046.
7.
Aydinli G., Mennan S. 2018. Biofumigation studies by using Raphanus sativus and Eruca sativa as a winter cycle crops to control root-knot nematodes. Brazilian Archives of Biology and Technology 61: e18180249. DOI:
https://doi.org/10.1590/1678-4....
8.
Bailey K.L., Lazarovits G. 2003. Suppressing soil borne diseases with residue management and organic amendments. Soil and Tillage Research 72: 169–180. DOI: 10.1016/S0167-1987(03)00086-2.
9.
Bakkali F., Averbeck S., Averbeck D., Idaomar M. 2008. Biological effects of EOs-a review. Food Chemical Toxicology 46: 446–475. DOI: 10.1016/j.fct.2007.09.106.
10.
Bandyopadhyay S., Khalko S. 2016. Biofumigation – an ecofriendly approach for managing bacterial wilt and soft rot disease of ginger. Indian Phytopathology 69: 53–56.
11.
Barry K.H., Koutros S., Lubin J.H., Coble J.B., Barone-Adesi F., Freeman L.E.B., Sandler D.P., Hoppin G.A., Ma X., Zheng T., Alavanja M.C.R. 2012. Methyl bromide exposure and cancer risk in the agricultural health study. Cancer Causes Control 23: 807–818. DOI: 10.1007/s10552-012-9949-2.
12.
Bellini A., Ferrocino I., Cucu A., Pugliese M., Garibaldi A., Gullino M.L. 2020. A compost treatment acts as a suppressive agent in Phytophthora capsici – cucurbita pepo pathosystem by modifying the rhizosphere microbiota. Frontiers in Plant Science 11: 885. DOI: doi.org/10.3389/fpls.2020.00885.
13.
Benchaa S., Hazzit M., Zermane N., Abdelkrim H. 2019. Chemical composition and herbicidal activity of essential oils from two Labiatae species from Algeria. Journal of Essential Oil Research 31: 335–346. DOI:
https://doi.org/10.1080/104129....
14.
Ben-Jabeur M., Ghabri E., Myriam M., Hamada W. 2015. Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt. Plant Physiology and Biochemistry 94: 35–40. DOI: 10.1016/j.plaphy.2015.05.006.
15.
Benlioğlu S., Boz Ö., Yildiz A., Kaşkavalci G., Benlioğlu K. 2005. Alternative soil solarization treatments for the control of soil borne diseases and weeds of strawberry in the Western Anatolia of Turkey. Journal of Phytopathology 153: 423–430. DOI:
https://doi.org/10.1111/j.1439....
16.
Bonanomi G., Lorito M., Vinale F., Woo S.L. 2018. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annual Review of Phytopathology 56: 1–20. DOI:
https://doi.org/10.1146/annure....
17.
Bouyaha A., Abrini J., Dakka N., Bakri Y. 2019. Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorumsensing phenotype in bacteria. Journal of Pharmaceutical Analysis 9: 301–311. DOI:
https://doi.org/10.1016/j.jpha....
18.
Campanella V., Mandalà C., Angileri V., Miceli C. 2020. Management of common root rot and Fusarium foot rot of wheat using Brassica carinata break crop green manure. Crop Protection 130: 105073. DOI: 10.1016/j.cropro.2019.105073.
19.
Chalkos D., Kadoglidou K., Karamanoli K., Fotiou C., Pavlatou-Ve A.S., Eleftherohorinos I.G., Constantinidou H.A., Vokou D. 2010. Mentha spicata and Salvia fruticosa composts as soil amendments in tomato cultivation. Plant Soil 332: 495–509. DOI: 10.1007/s11104-010-0315-4.
20.
Chellemi D.O., Gamliel A., Katan J., Subbarao K.V. 2016. Development and deployment of system-based approaches for the management of soilborne plant pathogens. Phytopathology 106: 216–225. DOI:
https://doi.org/10.1094/PHYTO-....
21.
Chen M.H., Nelson E.B. 2008. Seed-colonizing microbes from municipal biosolids compost suppress Pythium ultimum damping-off on different plant species. Phytopathology 98: 1012–1018. DOI: 10.1094/PHYTO-98-9-1012.
22.
Cochran K.A., Rothrock C.S. 2015. Brassica green manure amendments for management of Rhizoctonia solani in two annual ornamental crops in the field. HortScience 50: 555–558. DOI:
https://doi.org/10.21273/HORTS....
23.
Conn K.L., Tenuta M., Lazarovits G. 2005. Liquid swine manure can kill Verticillium dahliae microsclerotia in soil by volatile fatty acid, nitrous acid, and ammonia toxicity. Phytopathology 95: 28–35. DOI:
https://doi.org/10.1094/PHYTO-....
24.
Cotxarrera L., Trillas-Gay M.I., Steinberg C., Alabouvette C. 2002. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biology and Biochemistry 34: 467–476. DOI:
https://doi.org/10.1016/S0038-....
25.
Cucu M.A., Gilardi G., Pugliese M., Matic S., Gisi U., Gullino M.L., Garibaldi A. 2019. Influence of different biological control agents and compost on total, and nitrification-driven microbial communities at rhizosphere and soil level in a lettuce – Fusarium oxysporum f. sp. lactucae pathosystem. Journal of Applied Microbiology 26: 905–918. DOI: 10.1111/jam.14153.
26.
Cucu M.A., Gilardi G., Pugliese M., Ferrocino I., Gullino M.L. 2020. Effects of biocontrol agents and compost against the Phytophthora capsici of zucchini and their impact on the rhizosphere microbiota. Applied Soil Ecology 154: 103659. DOI:
https://doi.org/10.1016/j.apso....
27.
Daneel M., Engelbrecht E., Fourie H., Ahuja P. 2018. The host status of Brassicaceae to Meloidogyne and their effects as cover and biofumigant crops on root-knot nematode populations associated with potato and tomato under South African field conditions. Crop Protection 110: 198–206. DOI:
https://doi.org/10.1016/j.crop....
28.
Deberdt P., Davezies I., Coranson-Beaudu R., Jestin A. 2018. Efficacy of leaf oil from Pimenta racemosa var. racemosa in controlling bacterial wilt of tomato. Plant Disease 102: 124–131. DOI:
https://doi.org/10.1094/PDIS-0....
29.
Dhima K.V., Vasilakoglou I., Gatsis T., Panou-Philotheou E., Eleftherohorinos I. 2009. Effects of aromatic plants incorporated as green manure on weed and maize development. Field Crops Results 110: 235–241. DOI:
https://doi.org/10.1016/j.fcr.....
30.
Diab H.G., Hu S., Benson D.M. 2003. Suppression of Rhizoctonia solani on impatiens by enhanced microbial activity in composed swine waste-amended potting mixes. Phytopathology 93: 1115–1123. DOI: 10.1094/PHYTO.2003.93.9.1115.
31.
Djian-Caporalino C., Mateille T., Bailly-Bechet M. Marteu N., Fazari A., Bautheac P., Raptopoulo A., Van Duong L., Tavoillot J., Martiny P., Goillon C., Castagnone-Sereno P. 2019. Evaluating sorghums as green manure against root-knot nematodes. Crop Protection 122: 142–150. DOI:
https://doi.org/10.1016/j.crop....
32.
Djiwanti S.R., Supriadi, Wiratno 2019. Effectiveness of some clove and citronella oil based-pesticide formulas against root-knot nematode on ginger. IOP Conference Series: Earth and Environmental Science 250: 012090. DOI: 10.1088/1755-1315/250/1/012090.
33.
Echeverrigaray S., Zacaria J., Beltrao R. 2010. Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. Phytopathology 100: 199–203. DOI: 10.1094/PHYTO-100-2-0199.
34.
El-Baha A., El-Sherbiny A., Salme M., Sharrawy N., Mohamed N. 2017. Toxicity of essential oils extracted from Corymbia citriodora and Eucalyptus camaldulensis leaves against Meloidogyne incognita under laboratory conditions. Pakistan Journal of Nematology 35: 93–104. DOI:
http://dx.doi.org/10.18681/pjn....
35.
El-Gizawy K.K.H., Halawa S.M., Mehany A.L. 2018. Effect of essential oils of clove and dill applied as an insecticidal contact and fumigant to control some stored product. Arab Journal of Nuclear Sciences and Application 51: 81–88. DOI: 10.21608/AJNSA.2018.12394.
36.
Eljazi J.S., Zarroug Y., Aouini J., Salem N., Boushih E., Jallouli S., Médiouni Ben J.J., Limam F. 2020. Insecticidal activity of Artemisia herba-alba and effects on wheat flour quality in storage. Journal of Plant Diseases and Protection 127: 323–333. DOI:
https://doi.org/10.1007/s41348....
37.
Eloh K., Kpegba K., Sasanelli N., Koumaglo H.K., Caboni P. 2020. Nematicidal activity of some essential plant oils from tropical West Africa. International Journal of Pest Management 66: 131–141. DOI:
https://doi.org/10.1080/096708....
38.
Fahey J.W., Zalcmann A.T., Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 5–51. DOI:
https://doi.org/10.1016/S0031-....
39.
Galletti S., Sala E., Leoni O., Burzi P.L., Cerato C. 2008. Trichoderma spp. tolerance to Brassica carinata seed meal for a combined use in biofumigation. Biological Control 45: 319–327. DOI:
https://doi.org/10.1016/j.bioc....
40.
Gimsing A., Kirkegaard J. 2009. Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochemistry Reviews 8: 299–310. DOI:
https://doi.org/10.1007/s11101....
41.
Goud J.C., Termorshuizen A.J., Blok W.J., van Bruggen A.H.C. 2004. Long-term effect of biological soil disinfestation on Verticillium wilt. Plant Disease 88: 688–694. DOI: 10.1094/PDIS.2004.88.7.688.
42.
Haidar M.A., Sidahmed M.M. 2006. Elemental sulphur and chicken manure for the control of branched broomrape (Orobanche ramosa). Plant Protection 25: 47–51. DOI: 10.1016/j.cropro.2005.03.022.
43.
Hoitink H.A.J., Boehm M.J. 1999. Biocontrol within the context of soil microbial communities: a soil-dependent phenomenon Annual Review of Phytopathology 37: 427–446. DOI:
https://doi.org/10.1146/annure....
45.
Hollingsworth R.G. 2005. Limonene. A citrus extract, for control of mealybugs and scale insects. Journal of Economic Entomolgy 98: 772–779. DOI:
https://doi.org/10.1603/0022-0....
46.
Huang Q., Lakshman D.K. 2010. Effect of clove oil on plant pathogenic bacteria and bacterial wilt of tomato and geranium. Journal of Plant Pathology 92: 701–707. DOI:
https://www.jstor.org/stable/4....
47.
Ibrahim S.K., Traboulsi A.F., El-Haj S. 2006. Effect of essential oils and plant extracts on hatching, migration and mortality of Meloidogyne incognita. Phytopathologia Mediterranea 45: 238–246.
48.
Irshad M., Aziz S., Ahmed M.N., Asghar G., Akram M., Shahid M. 2018. Comparisons of chemical and biological studies of essential oils of stem, leaves and seeds of Zanthoxylum alatum Roxb growing wild in the state of Azad Jammu and Kashmir, Pakistan. Records of Natural Products 12: 638. DOI:
http://doi.org/10.25135/rnp.56....
49.
Ji P., Momol M.T., Olson S.M., Pradhanang P.M., Jones J.B. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Disease 89: 497–500. DOI:
https://doi.org/10.1094/PD-89-....
50.
Jin X., Wang J., Li D., Wu F., Zhou X. 2019 Rotations with indian mustard and wild rocket suppressed cucumber Fusarium wilt disease and changed rhizosphere bacterial communities. Microorganisms 7: 57. DOI:
https://doi.org/10.3390/microo....
51.
Kadoglidou K., Chalkos D., Karamanoli K., Eleftherohorinos I., Constantinidou H.I., Vokou D. 2014. Aromatic plants as soil amendments: effects of spearmint and sage on soil properties, growth and physiology of tomato seedlings. Scientia Horticulturae 179: 25–35. DOI:
https://doi.org/10.1016/j.scie....
52.
Kadoglidou K., Lagopodi A., Karamanoli K., Vokou D., Bardas G., Menexes G., Constantinidou H.I., Constantinidou H.I. 2011. Inhibitory and stimulatory effects of essential oils and individual monoterpenoids on growth and sporulation of four soil-borne fungal isolates of Aspergillus terreus, Fusarium oxysporum, Penicillium expansum and Verticillium dahliae. European Journal of Plant Pathology 130: 297–309. DOI:
https://doi.org/10.1007/s10658....
53.
Kadoglidou K., Chatzopoulou P., Maloupa E., Kalaitzidis A., Ghoghoberidze S., Katsantonis D. 2020. Mentha and oregano soil amendment induces enhancement of tomato tolerance against soilborne diseases, yield and quality. Agronomy 10: 406. DOI:
https://doi.org/10.3390/agrono....
54.
Kaur S., Singh H.P., Batish D.R., Kohli R.K. 2011. Chemical characterization and allelopathich potential of volatile oil of Ecualyptus tereticornis against Amaranthus viridis. Journal of Plant Interactions 6: 297–302. DOI:
https://doi.org/10.1080/174291....
56.
Kirkegaard J. 2009. Biofumigation for plant disease control – from the fundamentals to the farming system. p. 172–195. In: “Disease Control in Crops: Biological and Environmentally Friendly Approaches” (D. Wlaters, ed.). Wiley-Blackwell, Oxford. DOI:
https://doi.org/10.1002/978144....
57.
Kirkegaard J.A., Sarwar M. 1998. Biofumigation potential of Brassicas I- Variation in glucosinolate profiles of diverse field-grown Brassicas. Plant and Soil 201: 71–89. DOI:
https://doi.org/10.1023/A:1004....
58.
Klose S., Acosta-Martínez V., Ajwa H.A. 2006. Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides. Soil Biology and Biochemistry 38: 1243–1254. DOI:
https://doi.org/10.1016/j.soil....
59.
Köhl J., Kolnaar R., Ravensberg W. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Fronties in Plant Science 10: 845. DOI:
https://doi.org/10.3389/fpls.2....
60.
Koiou K., Vasilakoglou I., Dhima K. 2020. Herbicidal potential of lavender (Lavandula angustifolia Mill.) essential oil components on bristly foxtail (Setaria verticillata (L.) P. Beauv.): comparison with carvacrol, carvone, thymol and eugenol. Archives of Biological Sciences 72: 223–231. DOI:
https://doi.org/10.2298/ABS200....
61.
Kour D., Rana K.L., Yadav A.N., Dhaliwal H.S., Saxena A.K. 2020. Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology 23: 101487. DOI:
https://doi.org/10.1016/j.bcab....
62.
Lagrouh F., Dakka N., Bakri Y. 2017. The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. Journal of Mycologie Médicale 27: 303–311. DOI:
https://doi.org/10.1016/j.mycm....
63.
Lazarovits G., Conn K.L., Abbasi P.A., Tenuta M. 2005. Understanding the mode of action of organic soil amendments provides the way for improved management of soil borne plant pathogens. Acta Horticulturae 689: 215–224. DOI: 10.17660/ActaHortic.2005.698.29.
64.
Lei J., Leser M., Enan E. 2010. Nematicidal activity of two monoterpenoids and SER-2 tyramine receptor of Caenorhabditis elegans. Biochemical Pharmacology 79: 1062–1071. DOI: 10.1016/j.bcp.2009.11.002.
65.
Lewis J.A., Papavizas G.C. 1991. Biocontrol of cotton damping-off caused by Rhizoctonia solani in the field with formulations of Trichoderma spp. and Gliocladium virens. Crop Protection 10: 396–402. DOI:
https://doi.org/10.1016/S0261-....
66.
Makarian H., Poozesh V., Asghari H.R., Nazari M. 2016. Interaction effects of arbuscular mycorrhiza fungi and soil applied herbicides on plant growth. Communications in Soil Science and Plant Analysis 47: 619–629. DOI:
https://doi.org/10.1080/001036....
67.
Markakis E.A., Fountoulakis M.S., Daskalakis G.C, Kokkinis M., Ligoxigakis E.K. 2016. The suppressive effect of compost amendments on Fusarium oxysporum f.sp. radicis-cucumerinum in cucumber and Verticillium dahliae in eggplant. Crop Protection 79: 70–79. DOI:
https://doi.org/10.1016/j.crop....
68.
Matthiessen J.N., Kirkegaard J.A. 2006. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences 25: 235–265. DOI:
https://doi.org/10.1080/073526....
69.
Mayo-Prieto S., Rodríguez-González A., Lorenzana A., Gutiérrez S., Casquero P.A. 2020. Influence of substrates in the development of bean and in pathogenicity of Rhizoctonia solani JG Kühn. Agronomy 10: 707. DOI:
https://doi.org/10.3390/agrono....
70.
Mazzola M. 2004. Assessment and management of soil microbial community structure for disease suppression. Annual Review of Phytopathology 42: 35–59. DOI: 10.1146/annurev.phyto.42.040803.140408.
71.
Momma N., Momma N., Yamamoto K., Simandi P., Shishido M. 2006. Role of organic acids in the mechanisms of biological soil disinfestation (BSD). Journal of General Plant Pathology 72: 247–252. DOI:
https://doi.org/10.1007/s10327....
72.
Morales-Rodríguez C., Vettraino A.M., Vannini A. 2016. Efficacy of biofumigation with Brassica carinata commercial pellets (BioFence) to control vegetative and reproductive structures of Phytophthora cinnamomi. Plant Disease 100: 324–330. DOI:
https://doi.org/10.1094/PDIS-0....
73.
Motisi N., Poggi S., Filipe J.A.N., Lucas P., Doré T., Montfort F., Gilligan C.A., Bailey D.J. 2013. Epidemiological analysis of the effects of biofumigation for biological control of root rot in sugar beet. Plant Pathology 62: 69–78. DOI:
https://doi.org/10.1111/j.1365....
74.
Moutassem D., Belabid L., Bellik Y., Ziouche S., Baali F. 2019. Efficacy of essential oils of various aromatic plants in the biocontrol of Fusarium wilt and inducing systemic resistance in chickpea seedlings. Plant Protection Science 55: 202–217. DOI:
https://doi.org/10.17221/134/2....
75.
Nazzaro F., Fratianni F., Coppola R., Feo V.D. 2017. Essential oils and antifungal activity. Pharmaceuticals 10: 86. DOI: 10.3390/ph10040086.
76.
Nerio l.S., Olivero V.J., Stashenko E.E. 2009. Repellent activity of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). Journal of Stored Product Research 45: 212–214. DOI:
https://doi.org/10.1016/j.jspr....
77.
Ng L.C., Ismail W.A., Jusoh M. 2017. In vitro biocontrol potential of agro-waste compost to suppress Fusarium oxysporum, the causal pathogen of vascular wilt disease of roselle. Plant Pathology Journal 16: 12–18. DOI: 10.3923/ppj.2017.12.18.
78.
Ntougias S., Papadopoulou K.K., Zervakis G.I., Kavroulakis N., Ehaliotis C. 2008. Suppression of soilborne pathogens of tomato by composts derived from agro-industrial wastes abundant in Mediterranean regions. Biology and Fertility of Soils 44: 1081–1090.
79.
Ochiai N., Powelson M.L., Dick R.P., Crowe F.J. 2007. Effects of green manure type and amendment rate on Verticillium wilt severity of Russet Burbank potato. Plant Disease 91: 400–406. DOI:
https://doi.org/10.1094/PDIS-9....
80.
Oka Y., Nacar S., Putievsky E., Ravid U., Yaniv Z., Spiegel Y. 2000. Nematicidal activity of EOs and their components against the root-knot nematode. Phytopathology 90: 710–715. DOI:
https://doi.org/10.1094/PHYTO.....
81.
Okazaki H., Nose K. 1986. Acetic acid and n-butyric acid as causal agents of fungicidal activity of glucose amended flooded soil. Japanase Journal of Phytopathology 52: 384–393. DOI:
https://doi.org/10.3186/jjphyt....
82.
Okwute S.K. 2012. Plants as potential sources of pesticidal agents: a review. p 207–232. In: “Pesticides – Advances in Chemical and Botanical Pesticides” (R.P. Soundararajan, ed.). IntechOpen Book Series, London, United Kingdom.
83.
Oliveira R.D.L., Dhingra O.D., Lima A.O., Jham J.N., Berhow M.A., Holloway R.K., Vaughn S.F. 2011. Glucosinolate content and nematicidal activity of Brazilian wild mustard tissues against Meloidogyne incognita in tomato. Plant Soil 341: 155–164. DOI:
https://doi.org/10.1007/s11104....
84.
Ozdemir E., Gozel U. 2018. Nematicidal activities of essential oils against Meloidogyne incognita on tomato plant. Fresenius Environmental Bulletin 27: 4511–4517.
85.
Ozores-Hampton M., Stansly P.A., McSorley R., Obreza T.A. 2005. Effects of long-term organic amendments and soil solarization on pepper and watermelon growth, yield, and soil fertility. HortScience 40: 80–84. DOI:
https://doi.org/10.21273/HORTS....
86.
Panth M., Samuel C.H., Baysal-Gurel F. 2020. Methods for management of soilborne diseases in crop production. Agriculture MDPI 10: 1–21. DOI:
https://doi.org/10.3390/agricu....
87.
Paret M.L., Cabos R., Kratky B.A., Alvarez A.M. 2010. Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant Disease 94: 521–527. DOI: 10.1094/PDIS-94-5-0521.
88.
Perczak A., Gwiazdowska D., Marchwińska K., Juś K., Gwiazdowski R., Waśkiewicz A. 2019. Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Archives of Microbiology 201: 1085–1097. DOI: 10.1007/s00203-019-01673-5.
89.
Pontes N.C., Yamada J.K., Fujinawa M.F., Dhingra O.D., de Oliveira J.R. 2019. Soil fumigation with mustard essential oil to control bacterial wilt in tomato. European Journal of Plant Pathology 155: 435–444. DOI:
https://doi.org/10.1007/s10658....
90.
Pradhanang P.M., Momol M.T., Olson S.M., Jones J.B. 2003. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Disease 87: 423–427. DOI:
https://doi.org/10.1094/PDIS.2....
91.
Pugliese M., Liu B.P., Gullino M.L., Garibaldi A. 2011. Microbial enrichment of compost with biological control agents to enhance suppressiveness to four soil-borne diseases in greenhouse. Journal of Plant Diseases and Protection 118: 45–50. DOI:
https://doi.org/10.1007/BF0335....
92.
Pugliese M., Gilardi G., Garibaldi A., Gullino M.L. 2015. Organic amendments and soil suppressiveness: results with vegetable and ornamental crops. p. 495–509. In: “Organic Amendments and Soil Suppressiveness” (M. Meghvansi, A. Varma, eds.). Plant Disease Management. Springer, Cham, Switzerland. DOI:
https://doi.org/10.1007/978-3-....
93.
Ros C., Sánchez F., Martínez V., Lacasa C.M., Hernández A., Torres J., Guerrero M.M., Lacasa A. 2016. El cultivo de brásicas para biosolarización reduce las poblaciones de Meloidogyne incognita en los invernaderos de pimiento del Sudeste de España. Información Técnica Económica Agraria 112 (2): 109–126. DOI:
https://doi.org/10.12706/itea.... (in Spanish, with English summary).
94.
Selim E.M.I., Ammar M.M., Amer G.A., Awad H.M. 2020. Effect of some plant extracts, plant oils and Trichoderma spp. on tomato Fusarium wilt disease. Menoufia Journal of Plant Protection 5: 155–167.
95.
Singh H.P., Batish D.R., Kaur S., Arora K., Kohli R.K. 2006. Αlpha-pinene inhibits growth and induces oxidative stress in roots. Annals of Botany 98: 1261–1269. DOI:
https://doi.org/10.1093/aob/mc....
96.
Smith B.J., Kirkegaard J. 2002. In vitro inhibition of soil microorganisms by 2-phenylethyl isothiocyanate. Plant Pathology 51: 585–593. DOI:
https://doi.org/10.1046/j.1365....
97.
Soylu S., Yigitbas H., Soylu E.M., Kurt S. 2007. Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum. Journal of Applied Microbiology 103: 1021–1030. DOI:
https://doi.org/10.1111/j.1365....
98.
Stella M., Theeba M., Illani Z.I. 2019. Organic fertilizer amended with immobilized bacterial cells for extended shelf-life. Biocatalysis and Agricultural Biotechnology 20: 101248. DOI:
https://doi.org/10.1016/j.bcab....
99.
Sultana V., Ara J., Ehteshamul-Haque S. 2008. Suppression of root rotting fungi and root knot nematode of chili by seaweed and Pseudomonas aeruginosa. Journal of Phytopathology 156: 390–395. DOI:
https://doi.org/10.1111/j.1439....
100.
Thomas W.B. 1996. Methyl bromide: effective pest management tool and environmental threat. Journal of Nematology 28: 586–589.
101.
Tirry N., Kouchou A., Laghmari G., Lemjereb M., Hnadi H., Amranim K., Bahafid W., El Ghachtouli N. 2021. Improved salinity tolerance of Medicago sativa and soil enzyme activities by PGPR. Biocatalysis and Agricultural Biotechnology 31: 101914. DOI:
https://doi.org/10.1016/j.bcab....
102.
Trillas M.I., Casanova E., Cotxarrera I., Ordovas J., Borrero C., Aviles M. 2006. Compost from agricultural waste and the Trichoderma asperellum strain T34 suppress Rhizoctonia solani in cucumber seedlings. Biological Control 39: 32–38. DOI:
https://doi.org/10.1016/j.bioc....
103.
Vasilakoglou I., Dhima I., Wogiatzi E., Eleftherohorinos I., Lithourgidis A. 2007. Herbicidal potential of essential oils of oregano or marjoram (Origanum spp.) and basil (Ocimum basilicum) on Echinochloa crus-galli (L.) P. Beauv. and Chenopodium album L. weeds. Allelopathy Journal 20: 297–306.
104.
Waisen P., Cheng Z., Sipes B.S., DeFrank J., Wang H. 2020. Effects of biofumigant crop termination methods on suppression of plant-parasitic nematodes. Applied Soil Ecology 154: 103595. DOI:
https://doi.org/10.1016/j.apso....
105.
Yakhlef G., Hambaba L., Pinto D.C.G.A., Silva A.F.S. 2020. Chemical composition and insecticidal, repellent and antifungal activities of essential oil of Mentha rotundifolia (L.) from Algeria. Industrial Crops and Products 158: 112988. DOI:
https://doi.org/10.1016/j.indc....
106.
Yener I. 2020. Determination of antioxidant, cytotoxic, anticholinesterase, antiurease, antityrosinase, and antielastase activities and aroma, essential oil, fatty acid, phenolic, and terpenoid-phytosterol contents of Salvia poculata. Industrial Crops and Products 155: 112712. DOI:
https://doi.org/10.1016/j.indc....
107.
Zasada I.A., Ferris H. 2004. Nematode suppression with brassicaceous amendments: Application based upon glucosinolate profiles. Soil Biology and Biochemistry 36: 1017–1024.
108.
Zhao F., Zhang Y., Dong W., Zhang Y., Zhang Y., Sun Z., Yang L. 2019. Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil. Plant Soil 440: 491–505. DOI:
https://doi.org/10.1007/s11104....
109.
Zhou X.G., Everts K.L. 2004. Suppression of Fusarium wilt of watermelon by soil amendment with hairy vetch. Plant Disease 88: 1357–1365. DOI:
https://doi.org/10.1094/PDIS.2....
110.
Ziedan E.H., Saad M.M., El-Naggar M.A., Hemida K.A., El Samman M.G.A., Mostafa H.M. 2020. Efficacy of compatibility between endophytic biocontrol agents and abiotic agents as fungicides alternatives for controlling root rot of grapevine. Acta Scientific Agriculture 4 (5): 10–17.