RAPID COMMUNICATION
A breakthrough in the efficiency of contact DNA insecticides: rapid high mortality rates in the sap-sucking insects Dynaspidiotus britannicus Comstock and Unaspis euonymi Newstead
More details
Hide details
1
Lab on DNA Technologies, PCR analysis and Elaboration of DNA Insecticides and Lab on Cell Technologies and Elaboration
of DNA Medicines, Biochemistry Department, Taurida Academy, V.I. Vernadsky Crimean Federal University, Russia
2
Department of Dendrology, Nikita Botanical Gardens – National Scientific Centre Russian Academy of Sciences, Russia
3
Biochemistry Department, Medical Academy, Vernadsky Crimean Federal University, Russia
4
Department of Essential Oil and Medicinal Crops, Research Institute of Agriculture of Crimea, Russia
5
Department of Chemical Technology of Plastics, D. Mendeleev University of Chemical Technology of Russia, Russia
6
Department of Natural Ecosystems, Nikita Botanical Gardens – National Scientific Centre Russian Academy of Sciences, Russia
7
Laboratory of Plant Genomics and Bioinformatics, Nikita Botanical Gardens – National Scientific Centre Russian Academy of Sciences, Russia
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2020-02-19
Acceptance date: 2020-04-01
Online publication date: 2020-06-10
Corresponding author
Nikita Gal'chinsky
Lab on DNA Technologies, PCR analysis and Elaboration of DNA Insecticides and Lab on Cell Technologies and Elaboration
of DNA Medicines, Biochemistry Department, Taurida Academy, V.I. Vernadsky Crimean Federal University, Prospekt Vernadskogo 4, 295007, Simferopol, Russia
Journal of Plant Protection Research 2020;60(2):220-223
KEYWORDS
TOPICS
ABSTRACT
In this short communication describing experiments carried out on the larvae of two
insects, Unaspis euonymi Comstock (feeding on Euonymus japonicus Thunb.) and
Dynaspidiotus britannicus Newstead (feeding on Laurus nobilis L.), we evaluate for the first
time the efficiency of using DNA insecticides in the control of sap-sucking insects, including
armored scale insects. Over a period of 10 days, high insect mortality was detected in both
U. euonymi and D. britannicus, accompanied by a significant decrease in the concentration
of target RNAs. At the same time, no visible changes were observed when the leaves of the
host plants were subjected to treatment with DNA insecticides for one month. The results
show the high efficiency of DNA insecticides used against hemipteran insect pests. It is
noteworthy that the high efficiency of DNA insecticides and their low cost in comparison
with RNA preparations provides a safe and extremely promising potential vehicle for the
control of sap-sucking insects.
FUNDING
This research was funded by the Ministry of Science
and Higher Education of the Russian Federation
within the framework of the Federal Target Program
Research and Developments in Priority Directions
of the Scientific and Technological Complex
of Russia for 2014-2020 (unique project identifier
RFMEFI61319X0096).
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (22)
1.
Argyriou L.C. 1990. Olive. p. 579–583. In: “Armoured Scale Insects their Biology, Natural Enemies and Control” (D. Rosen, ed.). Vol. 4 B, World Crop Pests, Elsevier, Amsterdam, The Netherlands, 688 pp.
2.
Davidson J.A., Miller D.R. 1990. Ornamental plants. p. 603−632 In: “Armoured Scale Insects their Biology, Natural Enemies and Control” (D. Rosen, ed.). Vol. 4 B, World Crop Pests, Elsevier, Amsterdam, The Netherlands, 688 pp.
3.
Driesche R., Idoine K., Rose M., Bryan M. 1998. Evaluation of the effectiveness of Chilocorus kuwanae (Coleoptera: Coccinellidae) in suppressing euonymus scale (Homoptera: Diaspididae). Biological Control 12 (1): 56−65. DOI:
https://doi.org/10.1006/bcon.1....
4.
Frank S.D. 2012. Reduced risk insecticides to control scale insects and protect natural enemies in the production and maintenance of urban landscape plants. Environmental Entomology 41 (2): 377–386. DOI:
https://doi.org/10.1603/EN1123....
5.
Gutue C., Gutue M., Roşca I. 2012. Mites associated with parks and ornamental gardens in urban area – Bucharest. Scientific papers, Series B, Horticulture 56: 351−356.
6.
Juárez-Hernández P., Valdez-Carrasco J., Valdovinos-Ponce G., Mora-Aguilera J., Otero-Colina G., Téliz-Ortiz D., Hernández-Castro E., Ramírez-Ramírez I., González-Hernández V. 2014. Leaf penetration pattern of Aulacaspis tubercularis (Hemiptera: Diaspididae) stylet in mango. Florida Entomologist 97: 100–107.
7.
Kaydan M., Ülgentürk S., Özdemir I., Ulusoy M. 2014. Coccoidea (Hemiptera) species in Bartın and Kastamonu Provinces. Bulletin of Plant Protection 54 (1): 11−44.
8.
Mangoud A.A.H., Abou-Setta M.M. 2012. Chemicals control of scale insects (Hemiptera: Coccoidea) under local conditions. Egyptian Academic Journal of Biological Sciences 5 (2): 175−181.
9.
Miller D.R., Davidson J.A. 2005. Armored scale insect pests of trees and shrubs (Hemiptera: Diaspididae). Cornell University Press, Ithaca, NY, United States, 442 pp.
10.
Miller D.R., Miller G.L., Hodges G.S., Davidson J.A. 2005. Introduced scale insects (Hemiptera: Coccoidea) of the United States and their impact on US agriculture. Proceedings of the Entomological Society of Washington 107: 123–158.
11.
Nakahara S. 1982. Checklist of the Armored Scales (Homoptera: Diapididae) of the Conterminous United States. Plant Protection and Quarantine, Animal and Plant Health Inspection Service, USDA, Washington, USA, 110 pp.
12.
Oberemok V.V. 2008. Ukrainian Patent Application No. 36445. Oberemok V.V., Laikova K.V., Gal’chinsky N.V., Useinov R.Z., Novikov I.A., Temirova Z.Z., Shumskykh M.N., Krasnodubets A.M., Repetskaya A.I., Dyadichev V.V., Fomochkina I.I., Bessalova E.Y., Makalish T.P., Gninenko Y.I., Kubyshkin A.V. 2019a. DNA insecticide developed from the Lymantria dispar 5.8S ribosomal RNA gene provides a novel biotechnology for plant protection. Scientific Reports 9: 6197. DOI:
https://doi.org/10.1038/s41598....
13.
Oberemok V.V., Laikova K.V., Repetskaya A.I., Kenyo I.M., Gorlov M.V., Kasich I.N., Krasnodubets A.M., Gal’chinsky N.V., Fomochkina I.I., Zaitsev A.S., Bekirova V.V., Seidosmanova E.E., Dydik K.I., Meshcheryakova A.O., Nazarov S.A., Smagliy N.N., Chelengerova E.L., Kulanova A.A., Deri K., Subbotkin M.V., Useinov R.Z., Shumskykh M.N., Kubyshkin A.V. 2018. A half-century history of applications of antisense oligonucleotides in medicine, agriculture and forestry: We should continue the journey. Molecules 23: 1302. DOI:
https://doi.org/10.3390/molecu....
14.
Oberemok V.V., Laikova K.V., Useinov R.Z., Gal’chinsky N.V., Novikov I.A., Yurchenko K.A., Volkov M.E., Gorlov M.V., Brailko V.A., Plugatar Y.V. 2019b. Insecticidal activity of three 10–12 nucleotides long antisense sequences from 5.8S ribosomal RNA gene of gypsy moth Lymantria dispar L. against its larvae. Journal of Plant Protection Research 59 (4): 561–564. DOI:
https://doi.org/10.24425/jppr.....
15.
Oberemok V.V., Laikova K.V., Zaitsev A.S., Shumskykh M.N., Kasich I.N., Gal’chinsky N.V., Bekirova V.V., Makarov V.V., Agranovsky A.A., Gushchin V.A., Zubarev I.V., Kubyshkin A.V., Fomochkina I.I., Gorlov M.V., Skorokhod O.A. 2017. Molecular alliance of Lymantria dispar multiple nucleopolyhedrovirus and a short unmodified antisense oligonucleotide of its anti-apoptotic IAP-3 gene: A novel approach for gypsy moth control. International Journal of Molecular Sciences 18: 2446. DOI:
https://doi.org/10.3390/ijms18....
16.
Paule M.R., White R.J. 2000. Transcription by RNA polymerases I and III. Nucleic Acids Research 28: 1283–1298.
17.
Raupp M.J., Holmes J.J., Sadof C., Shrewsbury P., Davidson J. 2001. Effects of cover sprays andresidual pesticides on scale insects and natural enemies in urban forests. Journal of Arboriculture 27 (4): 203–214.
18.
Raupp M.J., Koehler C.S., Davidson J.A. 1992. Advances in implementing integrated pest management for woody landscape plants. Annual Review of Entomology 37: 561–585.
19.
Ülgentürk S., Şahin Ö., Ayhan B., Sarıbaşak H., Kaydan M. 2012. Scale insects species of Taurus cedar in Turkey. Turkish Journal of Entomology 36: 113−121.
20.
Xiao Y., Mao R., Singleton L., Arthurs S. 2016. Evaluation of reduced-risk insecticides for armored scales (Hemiptera: Diaspididae) infesting ornamental plants. Journal of Agricultural and Urban Entomology 32: 71–90.
21.
Zahradnik J. 1990a. Insects. Aventinum nakladatelství, s.r.o. Prague, 319 pp.
22.
Zahradnik J. 1990b. Forest: conifers. p. 633–644. In: “Armoured Scale Insects their Biology, Natural Enemies and Control” (D. Rosen, ed.). Vol. 4 B, World Crop Pests, Elsevier, Amsterdam, The Netherlands, 688 pp.