ORIGINAL ARTICLE
Trichoderma asperellum in the biocontrol of Lasiodiplodia theobromae and Pseudofusicoccum kimberleyense
More details
Hide details
1
Universidade Regional Integrada do Alto Uruguai e das Missões, Frederico Westphalen, Rio Grande do Sul, Brazil
2
Departamento de Defesa Fitossanitária, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
3
Departamento de Fitotecnia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
4
Laboratório de Processos de Engenharia Agroindustrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
5
Departamento de Engenharia Química, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2023-09-01
Acceptance date: 2023-10-18
Online publication date: 2023-10-26
Corresponding author
Mateus Alves Saldanha
Departamento de Fitotecnia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
Journal of Plant Protection Research 2023;63(4):488-498
HIGHLIGHTS
- Trichoderma asperellum decreased mycelial growth of L. theobromae and P. kimberleyense.
- The best condition for the production of T. asperellum filtrates with inhibitory action was pH 5, 100 rpm of agitation, 50 g · l–1 of sucrose and 105 spores · ml–1.
- T. asperellum isolates produced chitinase and compounds with biocontrol potential.
KEYWORDS
TOPICS
ABSTRACT
Lasiodiplodia theobromae and Pseudofusicoccum kimberleyense are pathogens causing
trunk canker in Carya illioniensis and there are still no reports of effective forms of
control. However, biological control is a promising measure. The objective of this work
was to isolate, identify and evaluate the action of Trichoderma spp. in the in vitro control
of L. theobromae and P. kimberleyense and to identify the compounds produced by
the antagonist. Trichoderma spp. was identified by molecular technique and morphologically
characterized. The antagonistic action of T. asperellum isolates (obtained from the
rhizospheric soil, and of an isolate obtained from a commercial formulation) was evaluated
by pairing cultures and volatile metabolites on L. theobromae and P. kimberleyense.
Optimization of the cultivation method of T. asperellum was carried out and the compounds
produced by the antagonist were identified by gas chromatography. Isolates obtained
from the soil were identified as T. asperellum and decreased mycelial growth of
L. theobromae and P. kimberleyense in the crop pairing test (48.98% S6 x Qt), as well as by
volatile metabolites (29.85% SM21 x TR4). The cultivation conditions that generated the
filtrates with the greatest antifungal action used 20 g · l–1 of corn maceration water, yeast extract
7.5 g · l–1, pH 5, agitation 100 rpm, sucrose 50 g · l–1, inoculum concentration 105 spores
· ml–1. Among the identified compounds, some stood out for having bioactive action, such as
pyran derivatives, celidoniol, deoxy, pentadecanoicacid, 2,3-dihydro-3,5-dihydroxy-6-methyl,
propanoicacid, 1-methylethyl ester and 9-octadecenoic acid. The T. asperellum isolates
showed potential for biocontrol in vitro, acting by different mechanisms.
ACKNOWLEDGEMENTS
The authors wish to thank Coordination for the Improvement
of National Council of Technological and
Scientific Development (CNPq) for the scholarships
and for financial support to Marlove Muniz, Marcio
Mazutti and Giovani Zabot who express their thanks
for the productivity grants.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (30)
1.
Adebesin A.A., Odebode C.A., Ayodele A.M. 2009. Control of postharvest rots of banana fruits by conidia and culture filtrates of Trichoderma asperellum. Journal Plant Protection Research 49 (3): 302–308. DOI:
https://doi.org/10.2478/v10045....
2.
Ali A., Javaid A., Shoaib A. 2017. GC-MS analysis and antifungal activity of methanolic root extract of Chenopodium album against Sclerotium rolfsii. Planta Daninha 35: 1–8. DOI:
https://doi.org/10.1590/s0100-....
3.
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 25 (17): 389–402. DOI:
https://doi.org/10.1093/nar/25....
4.
Barretto D., Vootla S. 2018. GC-MS analysis of bioactive compounds and antimicrobial activity of Cryptococcus rajasthanensis ky627764 isolated from bombyx mori gut microflora. International Journal of Advanced Research 6 (3): 525–538. DOI:
https://doi.org/10.21474/IJAR0....
5.
Chen F., Zheng X., Zhao X., Chen F. 2019a. First Report of Lasiodiplodia theobromae Causing Stem Canker of Fraxinus americana. Plant Disease 103 (12). DOI:
https://doi.org/10.1094/PDIS-0....
6.
Chen L., Wang Z., Zhang B., Ge M., Ng H., Niu Y., Liu L. 2019b. Production, structure and morphology of exopolysaccharides yielded by submerged fermentation of Antrodia cinnamomea. Carbohydr Polymer, 205 (1): 271-278. DOI:
https://doi.org/10.1016/j.carb....
7.
Chhouk K., Wahyudiono H., Goto M. 2018. Efficacy of supercritical carbon dioxide integrated hydrothermal extraction of Khmer medicinal plants with potential pharmaceutical activity. Journal of Environmental Chemical Engineering 6: 2944–2956. DOI:
https://doi.org/10.1016/j.jece....
8.
Dennis C., Webster J. 1971. Antagonistic properties of species-groups of Trichoderma. Transactions of the British Mycological Society 57 (1): 41–48. DOI:
https://doi.org/10.1016/S0007-....
9.
Ferreira D.F. 2014. Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia 38 (2): 1–4. DOI:
https://doi.org/10.1590/S1413-....
10.
Isaias C.O., Martins I., Silva J.B.T., Silva J.P., Melo S.C.M. 2014. Ação antagônica e de metabólitos bioativos de Trichoderma spp. contra os patógenos Sclerotium rolfsii e Verticillium dahliae. Summa Phytopathologica 40 (1): 1–8. DOI:
https://doi.org/10.1590/S0100-....
11.
Junges E., Muniz, M. F. B., Campos, A. D., Brun, T., Michelon, C. J., Mazutti, M. A. 2018. Bioproducts from Trichoderma harzianum as inducer of resistance to anthracnose in beans. p. 70–80. In: “Avanços Científicos e Tecnológicos em Bioprocessos” Organizador Alberdan Silva Santos. Ponta Grossa (PR): Atena Editora.
12.
Jöbstl D., Husøy T., Alexander J. 2010. Analysis of 5-hydroxymethyl-2-furoic acid (HMFA) the main metabolite of alimentary 5-hydroxymethyl-2-furfural (HMF) with HPLC and GC in urine. Food Chemistry 123 (3): 814–818. DOI:
https://doi.org/10.1016/j.food....
13.
Lazarotto M., Oliveira L da S., Harakava R., Zanatta P., Farias C.R.J. 2016. Identificação de fungos emboloradores em madeira de Pinus spp. em laboratório. Floresta e Ambiente 23 (4): 602–605. DOI:
https://doi.org/10.1590/2179-8....
14.
Milan M.D., Barroso F.M., Melo S.C.M., Araújo M.S. 2015. Light regimes used for producing Trichoderma harzianum conidia to control white mold in common bean plants. Pesquisa Agropecuária Tropical 45 (4): 434–439. DOI:
https://doi.org/10.1590/1983-4....
15.
Mishra B.K., Mishra R.K., Mishra R.C., Tiwari A.K., Ydav R.S., Dikshit A. 2011. Biocontrol efficacy of Trichoderma viride isolates against fungal plant pathogens causing disease in Vigna radiata L. Archives of Applied Science Research 3 (2): 361–369.
17.
Perrone G., Stea G., Epifani F.,Varga J., Frisvad J.C., Sansom R.A. 2011. Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biology 115 (11): 38–50. DOI:
https://doi.org/10.1016/j.funb....
18.
Pohl C.H., Kock J.L.F., Thibane V.S. 2011. Antifungal free fatty acids: A review. p. 61–71. In: “Science against Microbial Pathogens: Communicating Current Research and Technological Advances” (Mendez-Vilas A., ed.). 1st ed. Formatex.
19.
Poletto T., Maciel C.G., Muniz M.B., Blume E., Poletto I., Brioso P. 2016. First report of stem canker caused by Lasiodiplodia subglobosa on Carya illinoinensis in Brazil. Plant Disease 100 (5): 1016. DOI:
https://doi.org/10.1094/PDIS-0....
20.
Resende M.L.V., Salgado S.M.L., Chaves Z.M. 2003. Espécies ativas de oxigênio na resposta de defesa de plantas a patógenos. Fitopatologia Brasileira 28 (2): 123–130. DOI:
https://doi.org/10.1590/S0100-....
21.
Rolim J.M., Savian L.G., Walker C., Rabuske J.E., Sarzi J.S., Muniz M.F.B., Silva J.C.P da. 2020. First report of stem canker caused by Neofusicoccum parvum and Pseudofusicoccum kimberleyense on Carya illinoinensis in Brazil. Plant Disease 104 (11): 3067. DOI:
https://doi.org/10.1094/PDIS-0....
22.
Rolim J.M., Rabuske J.E., Savian L.G., Walker C., Sarzi J.S., Silva J.C.P., Muniz MB. 2022. Fungi of the botryosphaeriaceae family cause different levels of stem canker on pecan trees (Carya illinoinensis) in Brazil. Revista Árvore 46 (6): e4615. DOI:
https://doi.org/10.1590/1806-9....
24.
Sanchez A.D., Ousset M.J., Sosa M.C. 2019. Biological control of Phytophthora collar rot of pear using regional Trichoderma strains with multiple mechanisms. Biological Control 135: 124-134. DOI:
https://doi.org/10.1016/j.bioc....
25.
Singh P., Sharma M. 2020. Cultural and morphological characterization of antagonistic Trichoderma isolates. International Journal of Current Microbiology and Applied Sciences 9 (3): 1041–1048. DOI:
https://doi.org/10.20546/ijcma....
26.
Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution 24 (8): 1596–1599. DOI:
https://doi.org/10.1093/molbev....
27.
Tapwai A., Pandey H. 2016. In vitro evaluation of Trichoderma species for virulence efficacy on Botryodiplodia palmarum. Current Life Sciences 2 (3): 86–91. DOI:
http://dx.doi.org/10.5281/zeno....
28.
Thompson J.D., Higgins D.G., Gibson T.J., Clustal W. 1994. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22 (22): 4673–4680. DOI:
https://doi.org/10.1093/nar/22....
29.
Vázquez 2016. Retos y opurtunidades para el aprovechamiento de la Nuez pecanera in México. Centro de Investigacíon y Asistencia in Tecnología y Diseno del Estado de Jalisco, A.C. (CIATEJ), 124 pp.
30.
Vinale F., Sivasithamparam F., Ghisalberti E.L., Woo S.L., Nigro M., Marra R., Pascale A., Ruocco M., Lanzuize S., Manganiello G., Lorito M. 2014. Trichoderma Secondary Metabolites Active on Plants and Fungal Pathogens. The Open Mycology Journal 8: 127-139. DOI:
https://doi.org/10.2174/187443....